Certara QSP, Certara UK Limited, Sheffield, UK.
Clin Pharmacol Ther. 2020 Apr;107(4):858-870. doi: 10.1002/cpt.1786. Epub 2020 Feb 13.
Application of contemporary molecular biology techniques to clinical samples in oncology resulted in the accumulation of unprecedented experimental data. These "omics" data are mined for discovery of therapeutic target combinations and diagnostic biomarkers. It is less appreciated that omics resources could also revolutionize development of the mechanistic models informing clinical pharmacology quantitative decisions about dose amount, timing, and sequence. We discuss the integration of omics data to inform mechanistic models supporting drug development in immuno-oncology. To illustrate our arguments, we present a minimal clinical model of the Cancer Immunity Cycle (CIC), calibrated for non-small cell lung carcinoma using tumor microenvironment composition inferred from transcriptomics of clinical samples. We review omics data resources, which can be integrated to parameterize mechanistic models of the CIC. We propose that virtual trial simulations with clinical Quantitative Systems Pharmacology platforms informed by omics data will be making increasing impact in the development of cancer immunotherapies.
应用当代分子生物学技术对肿瘤学中的临床样本进行分析,积累了前所未有的实验数据。这些“组学”数据被挖掘出来,以发现治疗靶标组合和诊断生物标志物。但人们较少认识到,组学资源也可能彻底改变为临床药理学提供定量决策(关于剂量、时间和顺序)的机制模型的发展。我们讨论了整合组学数据以支持药物开发中免疫肿瘤学的机制模型。为了说明我们的观点,我们提出了癌症免疫循环(CIC)的最小临床模型,该模型使用从临床样本转录组学推断的肿瘤微环境组成进行了非小细胞肺癌的校准。我们回顾了可以整合到 CIC 机制模型中进行参数化的组学数据资源。我们提出,通过组学数据提供信息的临床定量系统药理学平台进行虚拟试验模拟,将在癌症免疫疗法的开发中产生越来越大的影响。