Singh Fulya Akpinar, Afzal Nasrin, Smithline Shepard J, Thalhauser Craig J
Genmab US, Inc., 777 Scudders Mill Rd Bldg 2 4th Floor, Plainsboro, NJ, 08536, USA.
J Pharmacokinet Pharmacodyn. 2024 Oct;51(5):533-542. doi: 10.1007/s10928-023-09871-x. Epub 2023 Jun 29.
Validation of a quantitative model is a critical step in establishing confidence in the model's suitability for whatever analysis it was designed. While processes for validation are well-established in the statistical sciences, the field of quantitative systems pharmacology (QSP) has taken a more piecemeal approach to defining and demonstrating validation. Although classical statistical methods can be used in a QSP context, proper validation of a mechanistic systems model requires a more nuanced approach to what precisely is being validated, and what role said validation plays in the larger context of the analysis. In this review, we summarize current thoughts of QSP validation in the scientific community, contrast the aims of statistical validation from several contexts (including inference, pharmacometrics analysis, and machine learning) with the challenges faced in QSP analysis, and use examples from published QSP models to define different stages or levels of validation, any of which may be sufficient depending on the context at hand.
定量模型的验证是确立对该模型适用于其设计的任何分析的信心的关键步骤。虽然验证过程在统计科学中已确立,但定量系统药理学(QSP)领域在定义和证明验证方面采取了更为零散的方法。尽管经典统计方法可用于QSP背景下,但对一个机制性系统模型的正确验证需要对确切要验证的内容以及该验证在更大的分析背景中所起的作用采用更细致入微的方法。在本综述中,我们总结了科学界对QSP验证的当前看法,将来自几种背景(包括推理、药代动力学分析和机器学习)的统计验证目标与QSP分析中面临的挑战进行对比,并使用已发表的QSP模型中的示例来定义验证的不同阶段或水平,根据手头的背景,其中任何一个阶段或水平可能就足够了。