Suppr超能文献

解决惰性知识问题:类别构建促进自动迁移。

Sorting out the problem of inert knowledge: Category construction to promote spontaneous transfer.

机构信息

Department of Psychology.

出版信息

J Exp Psychol Learn Mem Cogn. 2020 May;46(5):803-821. doi: 10.1037/xlm0000750. Epub 2019 Jul 25.

Abstract

A fundamental goal in the study of human cognition is to understand the transfer of knowledge. This goes hand-in-hand with the translational goal of promoting such transfer via instructional techniques. Despite a rich history of research using the analogical problem-solving paradigm, no study activity has been found to produce a robust rate of successful spontaneous transfer-even when the test is immediate. We propose the category status hypothesis as an explanation of the difficulty of transfer and as motivation for a novel approach to promoting transfer. We report a set of experiments evaluating a category construction technique based on a sorting task. In Experiment 1a, we found category construction to be significantly more effective than the "gold standard" of schema abstraction through comparison of 2 analogous cases. In Experiment 1b, we explored a variation of the category construction technique that did not reliably differ in effectiveness from comparison-based schema abstraction-we also verified that both study tasks were superior to a baseline task of separate summarization of 2 cases. In Experiment 2, we conducted a replication of the initial design with higher power and confirmed the significant advantage for category construction over schema abstraction via comparison. In Experiment 3, we compared category construction to an information-consistent reading comprehension control to evaluate competing interpretations of the category construction advantage found in Experiments 1 and 2. We discuss theoretical and applied implications of these findings. (PsycInfo Database Record (c) 2020 APA, all rights reserved).

摘要

人类认知研究的一个基本目标是理解知识的迁移。这与通过教学技术促进这种迁移的翻译目标是一致的。尽管使用类比问题解决范式进行了丰富的研究,但即使在即时测试的情况下,也没有发现任何学习活动能产生稳定的成功迁移率。我们提出类别状态假设作为对迁移困难的解释,并为促进迁移提供一种新的方法。我们报告了一组评估基于分类任务的类别构建技术的实验。在实验 1a 中,我们通过比较 2 个类似的案例发现,类别构建比“模式抽象”这一“黄金标准”更为有效。在实验 1b 中,我们探索了一种类别构建技术的变体,其效果与基于比较的模式抽象相比并没有明显的差异——我们还验证了这两个学习任务都优于对 2 个案例进行单独总结的基线任务。在实验 2 中,我们进行了初始设计的复制,增加了功效,并通过比较证实了类别构建相对于模式抽象的显著优势。在实验 3 中,我们将类别构建与信息一致的阅读理解控制进行了比较,以评估在实验 1 和 2 中发现的类别构建优势的竞争解释。我们讨论了这些发现的理论和应用意义。(PsycInfo 数据库记录(c)2020 APA,保留所有权利)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验