Department of Chemistry, Oregon State University, Corvallis, OR, USA.
Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA.
Fungal Genet Biol. 2019 Nov;132:103256. doi: 10.1016/j.fgb.2019.103256. Epub 2019 Jul 22.
Many secondary metabolites are produced by biosynthetic gene clusters (BGCs) that are repressed during standard growth conditions, which complicates the discovery of novel bioactive compounds. In the genus Fusarium, many BGCs reside in chromatin enriched for trimethylated histone 3 lysine 27 (H3K27me3), a modification correlated with transcriptional gene silencing. Here we report on our progress in assigning metabolites to genes by using a strain lacking the H3K27 methyltransferase, Kmt6. To guide isolation efforts, we coupled genetics to multivariate analysis of liquid chromatography-mass spectrometry (LCMS) data from both wild type and kmt6, which allowed identification of compounds previously unknown from F. graminearum. We found low molecular weight, amino acid-derived metabolites (N-ethyl anthranilic acid, N-phenethylacetamide, N-acetyltryptamine). We identified one new compound, protofusarin, as derived from fusarin biosynthesis. Similarly, we isolated large amounts of fusaristatin A, gibepyrone A, and fusarpyrones A and B, simply by using the kmt6 mutant, instead of having to optimize growth media. To increase the abundance of metabolites underrepresented in wild type, we generated kmt6 fus1 double mutants and discovered tricinolone and tricinolonoic acid, two new sesquiterpenes belonging to the tricindiol class. Our approach allows rapid visualization and analyses of the genetically induced changes in metabolite production, and discovery of new molecules by a combination of chemical and genetic dereplication. Of 22 fungal metabolites identified here, 10 compounds had not been reported from F. graminearum before. We show that activating silent metabolic pathways by mutation of a repressive chromatin modification enzyme can result in the discovery of new chemistry even in a well-studied organism, and helps to connect new or known small molecules to the BGCs responsible for their production.
许多次生代谢产物是由生物合成基因簇 (BGCs) 产生的,这些 BGCs 在标准生长条件下受到抑制,这使得发现新的生物活性化合物变得复杂。在镰刀菌属中,许多 BGCs 位于富含三甲基化组蛋白 3 赖氨酸 27 (H3K27me3) 的染色质中,这种修饰与转录基因沉默有关。在这里,我们报告了使用缺乏 H3K27 甲基转移酶 Kmt6 的菌株将代谢产物分配给基因的进展。为了指导分离工作,我们将遗传学与野生型和 kmt6 的液相色谱-质谱 (LCMS) 数据的多元分析相结合,这使得能够鉴定以前从未从 F. graminearum 中鉴定出的化合物。我们发现了低分子量、氨基酸衍生的代谢物(N-乙基邻氨基苯甲酸、N-苯乙酰胺、N-乙酰色胺)。我们鉴定出一种新化合物原伏马菌素,它是伏马菌素生物合成的产物。同样,我们简单地使用 kmt6 突变体分离出大量的 Fusaristatin A、Gibepyrone A 和 Fusarpyrones A 和 B,而无需优化生长培养基。为了增加野生型中代表性不足的代谢物的丰度,我们生成了 kmt6 fus1 双突变体,并发现了麦角固醇酮和麦角固醇酸,这两种新的倍半萜类化合物属于三萜类。我们的方法允许快速可视化和分析遗传诱导的代谢产物产生变化,并通过化学和遗传去重复化的组合发现新的分子。在鉴定的 22 种真菌代谢产物中,有 10 种化合物以前从未从 F. graminearum 中报道过。我们表明,通过突变抑制染色质修饰酶来激活沉默的代谢途径,即使在研究充分的生物体中,也可以发现新的化学物质,并有助于将新的或已知的小分子与负责其产生的 BGCs 联系起来。