Studt Lena, Rösler Sarah M, Burkhardt Immo, Arndt Birgit, Freitag Michael, Humpf Hans-Ulrich, Dickschat Jeroen S, Tudzynski Bettina
Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University Münster, 48143, Münster, Germany.
Institute of Food Chemistry, Westfälische Wilhelms-University Münster, 48149, Münster, Germany.
Environ Microbiol. 2016 Nov;18(11):4037-4054. doi: 10.1111/1462-2920.13427. Epub 2016 Jul 18.
Filamentous fungi produce a vast array of secondary metabolites (SMs) and some play a role in agriculture or pharmacology. Sequencing of the rice pathogen Fusarium fujikuroi revealed the presence of far more SM-encoding genes than known products. SM production is energy-consuming and thus tightly regulated, leaving the majority of SM gene clusters silent under laboratory conditions. One important regulatory layer in SM biosynthesis involves histone modifications that render the underlying genes either silent or poised for transcription. Here, we show that the majority of the putative SM gene clusters in F. fujikuroi are located within facultative heterochromatin marked by trimethylated lysine 27 on histone 3 (H3K27me3). Kmt6, the methyltransferase responsible for establishing this histone mark, appears to be essential in this fungus, and knock-down of Kmt6 in the KMT6 strain shows a drastic phenotype affecting fungal growth and development. Transcription of four so far cryptic and otherwise silent putative SM gene clusters was induced in the KMT6 strain, in which decreased expression of KMT6 is accompanied by reduced H3K27me3 levels at the respective gene loci and accumulation of novel metabolites. One of the four putative SM gene clusters, named STC5, was analysed in more detail thereby revealing a novel sesquiterpene.
丝状真菌能产生大量的次级代谢产物(SMs),其中一些在农业或药理学中发挥作用。对水稻病原菌藤仓镰孢菌(Fusarium fujikuroi)的测序显示,其编码SM的基因数量远远超过已知产物。SM的产生消耗能量,因此受到严格调控,使得大多数SM基因簇在实验室条件下处于沉默状态。SM生物合成中的一个重要调控层面涉及组蛋白修饰,这些修饰会使相关基因沉默或为转录做好准备。在这里,我们表明藤仓镰孢菌中大多数假定的SM基因簇位于以组蛋白3上赖氨酸27三甲基化(H3K27me3)为标记的兼性异染色质区域内。负责建立这种组蛋白标记的甲基转移酶Kmt6在这种真菌中似乎是必不可少的,在KMT6菌株中敲低Kmt6会表现出影响真菌生长和发育的剧烈表型。在KMT6菌株中,四个迄今为止隐秘且沉默的假定SM基因簇的转录被诱导,在该菌株中KMT6表达降低伴随着相应基因位点H3K27me3水平的降低以及新代谢产物的积累。对这四个假定的SM基因簇之一,即命名为STC5的基因簇进行了更详细的分析,从而揭示了一种新的倍半萜。