Suppr超能文献

当连续结果需要二分类化进行应答者分析时的推断策略:一项模拟研究。

Imputation strategies when a continuous outcome is to be dichotomized for responder analysis: a simulation study.

机构信息

Mel and Enid College of Public Health, University of Arizona, 1295 N. Martin Ave, Tucson, AZ, 85724, USA.

出版信息

BMC Med Res Methodol. 2019 Jul 23;19(1):161. doi: 10.1186/s12874-019-0793-x.

Abstract

BACKGROUND

In many clinical trials continuous outcomes are dichotomized to compare proportions of patients who respond. A common and recommended approach to handling missing data in responder analysis is to impute as non-responders, despite known biases. Multiple imputation is another natural choice but when a continuous outcome is ultimately dichotomized, the specifications of the imputation model come into question. Practitioners can either impute the missing outcome before dichotomizing or dichotomize then impute. In this study we compared multiple imputation of the continuous and dichotomous forms of the outcome, and imputing responder status as non-response in responder analysis.

METHODS

We simulated four response profiles representing a two-arm randomized controlled trial with a continuous outcome at four time points. We omitted data using six missing at random mechanisms, and imputed missing observations three ways: 1) replacing as non-responder; 2) multiply imputing before dichotomizing; and 3) multiply imputing the dichotomized response. Imputation models included the continuous response at all timepoints, and additional auxiliary variables for some scenarios. We assessed bias, power, coverage of the 95% confidence interval, and type 1 error. Finally, we applied these methods to a longitudinal trial for patients with major depressive disorder.

RESULTS

Both forms of multiple imputation performed better than non-response imputation in terms of bias and type 1 error. When approximately 30% of responses were missing, bias was less than 7.3% for multiple imputation scenarios but when 50% of responses were missing, imputing before dichotomizing generally had lower bias compared to dichotomizing before imputing. Non-response imputation resulted in biased estimates, both underestimates and overestimates. In the example trial data, non-response imputation estimated a smaller difference in proportions than multiply imputed approaches.

CONCLUSIONS

With moderate amounts of missing data, multiply imputing the continuous outcome variable prior to dichotomizing performed similar to multiply imputing the binary responder status. With higher rates of missingness, multiply imputing the continuous variable was less biased and had well-controlled coverage probabilities of the 95% confidence interval compared to imputing the dichotomous response. In general, multiple imputation using the longitudinally measured continuous outcome in the imputation model performed better than imputing missing observations as non-responders.

摘要

背景

在许多临床试验中,连续结局被二分类以比较反应患者的比例。处理反应分析中缺失数据的一种常见且推荐的方法是将其推断为无反应者,尽管存在已知的偏倚。多重插补是另一种自然的选择,但当最终将连续结局二分类时,插补模型的规范就会受到质疑。从业者可以在二分类之前插补缺失的结局,也可以先二分类然后插补。在这项研究中,我们比较了连续结局和二分类结局的多重插补,以及在反应分析中将反应状态推断为无反应者的缺失数据。

方法

我们模拟了四种反应模式,代表了一个有四个时间点的连续结局的两臂随机对照试验。我们使用六种随机缺失机制缺失数据,并以三种方式插补缺失的观测值:1)替换为无反应者;2)在二分类之前多重插补;3)多重插补二分类的反应。插补模型包括所有时间点的连续反应,以及某些情况下的附加辅助变量。我们评估了偏倚、功效、95%置信区间的覆盖率和Ⅰ类错误。最后,我们将这些方法应用于一项患有重度抑郁症的纵向试验。

结果

在偏倚和Ⅰ类错误方面,两种形式的多重插补都比无反应插补表现更好。当大约 30%的反应缺失时,多重插补的偏倚小于 7.3%,但当 50%的反应缺失时,在二分类之前插补通常比在插补之前二分类具有更低的偏倚。无反应插补导致了有偏的估计值,既有低估也有高估。在示例试验数据中,无反应插补估计的比例差异小于多重插补方法。

结论

在中等程度的缺失数据下,在二分类之前对连续结局变量进行多重插补与对二进制反应者状态进行多重插补表现相似。在更高的缺失率下,与插补二分类反应相比,对连续变量进行多重插补的偏倚更小,95%置信区间的覆盖率控制得更好。一般来说,在插补模型中使用纵向测量的连续结局进行多重插补比将缺失观测值推断为无反应者表现更好。

相似文献

6
Outcome-sensitive multiple imputation: a simulation study.结果敏感多重填补:一项模拟研究。
BMC Med Res Methodol. 2017 Jan 9;17(1):2. doi: 10.1186/s12874-016-0281-5.

引用本文的文献

本文引用的文献

1
Using simulation studies to evaluate statistical methods.运用模拟研究评估统计方法。
Stat Med. 2019 May 20;38(11):2074-2102. doi: 10.1002/sim.8086. Epub 2019 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验