Department of Biostatistics, Erasmus Medical Center, Rotterdam, The Netherlands.
Danone Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands.
BMC Med Res Methodol. 2019 Jul 25;19(1):163. doi: 10.1186/s12874-019-0791-z.
Many prodromal Alzheimer's disease trials collect two types of data: the time until clinical diagnosis of dementia and longitudinal patient information. These data are often analysed separately, although they are strongly associated. By combining the longitudinal and survival data into a single statistical model, joint models can account for the dependencies between the two types of data.
We illustrate the major steps in a joint modelling approach, motivated by data from a prodromal Alzheimer's disease study: the LipiDiDiet trial.
By using joint models we are able to disentangle baseline confounding from the intervention effect and moreover, to investigate the association between longitudinal patient information and the time until clinical dementia diagnosis.
Joint models provide a valuable tool in the statistical analysis of clinical studies with longitudinal and survival data, such as in prodromal Alzheimer's disease trials, and have several added values compared to separate analyses.
许多前驱阿尔茨海默病试验收集了两种类型的数据:直到痴呆临床诊断的时间和纵向患者信息。尽管这两种数据密切相关,但它们通常是分开分析的。通过将纵向数据和生存数据合并到一个单一的统计模型中,联合模型可以解释这两种数据之间的相关性。
我们通过前驱阿尔茨海默病研究(LipiDiDiet 试验)的数据来说明联合建模方法的主要步骤。
通过使用联合模型,我们能够从干预效果中分离出基线混杂因素,并且可以进一步研究纵向患者信息与临床痴呆诊断时间之间的关联。
联合模型为具有纵向和生存数据的临床试验的统计分析提供了一个有价值的工具,例如在前驱阿尔茨海默病试验中,与单独分析相比,它具有多个附加价值。