T. C. Jenkins Department of Biophysics , Johns Hopkins University , Baltimore , Maryland 21218 , United States.
The Johns Hopkins University Biomolecular NMR Center , Johns Hopkins University , Baltimore , Maryland 21218 , United States.
Biochemistry. 2019 Aug 20;58(33):3480-3493. doi: 10.1021/acs.biochem.9b00355. Epub 2019 Aug 6.
Parallel β-sheet-containing repeat proteins often display a structural motif in which conserved asparagines form a continuous ladder buried within the hydrophobic core. In such "asparagine ladders", the asparagine side-chain amides form a repetitive pattern of hydrogen bonds with neighboring main-chain NH and CO groups. Although asparagine ladders have been thought to be important for stability, there is little experimental evidence to support such speculation. Here we test the contribution of a minimal asparagine ladder from the leucine-rich repeat protein pp32 to stability and investigate lattice rigidity and hydrogen bond character using solution nuclear magnetic resonance (NMR) spectroscopy. Point substitutions of the two ladder asparagines of pp32 are strongly destabilizing and decrease the cooperativity of unfolding. The chemical shifts of the ladder side-chain H protons are shifted significantly downfield in the NMR spectrum and have low temperature coefficients, indicative of strong hydrogen bonding. In contrast, the H protons are shifted upfield and have temperature coefficients close to zero, suggesting an asymmetry in hydrogen bond strength along the ladder. Ladder NH groups have weak H-N cross-peak intensities; H-N nuclear Overhauser effect and N CPMG experiments show this to be the result of high rigidity. Hydrogen exchange measurements demonstrate that the ladder NH groups exchange very slowly, with rates approaching the global exchange limit. Overall, these results show that the asparagine side chains are held in a very rigid, nondynamic structure, making a significant contribution to the overall stability. In this regard, buried asparagine ladders can be considered "second backbones" within the cores of their elongated β-sheet host proteins.
富含β-折叠的重复蛋白通常具有一种结构基元,其中保守的天冬酰胺形成一个连续的阶梯,埋藏在疏水区核心内。在这种“天冬酰胺梯”中,天冬酰胺侧链酰胺与相邻主链 NH 和 CO 基团形成重复的氢键模式。尽管天冬酰胺梯被认为对稳定性很重要,但几乎没有实验证据支持这种推测。在这里,我们测试了富含亮氨酸重复蛋白 pp32 中的最小天冬酰胺梯对稳定性的贡献,并使用溶液核磁共振(NMR)光谱研究了晶格刚性和氢键性质。pp32 中两个梯式天冬酰胺的点取代强烈不稳定,并降低了展开的协同性。梯式侧链 H 质子的化学位移在 NMR 谱中显著移向高场,具有低的温度系数,表明氢键很强。相比之下,H 质子移向低场,温度系数接近零,表明沿梯的氢键强度存在不对称性。梯式 NH 基团的 H-N 交叉峰强度较弱;H-N 核 Overhauser 效应和 N CPMG 实验表明,这是由于高刚性造成的。氢交换测量表明,梯式 NH 基团的交换非常缓慢,速率接近全局交换极限。总的来说,这些结果表明,天冬酰胺侧链被保持在非常刚性、非动态的结构中,对整体稳定性有重要贡献。在这方面,埋藏的天冬酰胺梯可以被视为其伸长的β-片层主蛋白核心内的“第二骨架”。