Saidi Norshahirah M, Omar Fatin Saiha, Numan Arshid, Apperley David C, Algaradah Mohammed M, Kasi Ramesh, Avestro Alyssa-Jennifer, Subramaniam Ramesh T
Centre for Ionics, University of Malaya, Department of Physics , University of Malaya , Kuala Lumpur 50603 , Malaysia.
State Key Laboratory of ASIC and System, SIST , Fudan University , Shanghai 200433 , China.
ACS Appl Mater Interfaces. 2019 Aug 21;11(33):30185-30196. doi: 10.1021/acsami.9b07062. Epub 2019 Aug 8.
To overcome the critical limitations of liquid-electrolyte-based dye-sensitized solar cells, quasi-solid-state electrolytes have been explored as a means of addressing long-term device stability, albeit with comparatively low ionic conductivities and device performances. Although metal oxide additives have been shown to augment ionic conductivity, their propensity to aggregate into large crystalline particles upon high-heat annealing hinders their full potential in quasi-solid-state electrolytes. In this work, sonochemical processing has been successfully applied to generate fine CoO nanoparticles that are highly dispersible in a PAN:P(VP--VAc) polymer-blended gel electrolyte, even after calcination. An optimized nanocomposite gel polymer electrolyte containing 3 wt % sonicated CoO nanoparticles (PVVA-3) delivers the highest ionic conductivity (4.62 × 10 S cm) of the series. This property is accompanied by a 51% enhancement in the apparent diffusion coefficient of triiodide versus both unmodified and unsonicated electrolyte samples. The dye-sensitized solar cell based on PVVA-3 displays a power conversion efficiency of 6.46% under AM1.5 G, 100 mW cm. By identifying the optimal loading of sonochemically processed nanoparticles, we are able to generate a homogenous extended particle network that effectively mobilizes redox-active species through a highly amorphous host matrix. This effect is manifested in a selective 51% enhancement in photocurrent density ( = 16.2 mA cm) and a lowered barrier to N719 dye regeneration ( = 193 Ω) versus an unmodified solar cell. To the best of our knowledge, this work represents the highest known efficiency to date for dye-sensitized solar cells based on a sonicated CoO-modified gel polymer electrolyte. Sonochemical processing, when applied in this manner, has the potential to make meaningful contributions toward the ongoing mission to achieve the widespread exploitation of stable and low-cost dye-sensitized solar cells.
为克服基于液体电解质的染料敏化太阳能电池的关键局限性,人们已探索使用准固态电解质来解决器件的长期稳定性问题,尽管其离子电导率和器件性能相对较低。虽然金属氧化物添加剂已被证明可提高离子电导率,但它们在高温退火时易于聚集成大的晶体颗粒,这阻碍了它们在准固态电解质中的全部潜力。在这项工作中,已成功应用声化学处理来生成细小的CoO纳米颗粒,这些纳米颗粒即使在煅烧后也能高度分散在PAN:P(VP-VAc)聚合物共混凝胶电解质中。一种含有3 wt%超声处理的CoO纳米颗粒(PVVA-3)的优化纳米复合凝胶聚合物电解质具有该系列中最高的离子电导率(4.62×10 S cm)。与未改性和未超声处理的电解质样品相比,该性能伴随着三碘化物表观扩散系数提高51%。基于PVVA-3的染料敏化太阳能电池在AM1.5 G、100 mW cm条件下的功率转换效率为6.46%。通过确定声化学处理的纳米颗粒的最佳负载量,我们能够生成一个均匀的扩展颗粒网络,该网络通过高度无定形的主体基质有效地移动氧化还原活性物种。与未改性的太阳能电池相比,这种效应表现为光电流密度选择性提高51%(=16.2 mA cm)以及N719染料再生的势垒降低(=193 Ω)。据我们所知,这项工作代表了基于超声处理的CoO改性凝胶聚合物电解质的染料敏化太阳能电池迄今为止已知的最高效率。以这种方式应用声化学处理,有可能为实现稳定且低成本的染料敏化太阳能电池的广泛应用这一持续任务做出有意义的贡献。