Teke Sosiawati, Hossain Md Mokter, Bhattarai Roshan Mangal, Saud Shirjana, Denra Avik, Hoang Phuong Lan Nguyen Mai Cao, Ali Adnan, Nguyen Van Toan, Mok Young Sun
Department of Chemical Engineering, Jeju National University Jeju 63243 Republic of Korea
Department of Chemical and Biological Engineering, University of Idaho Moscow 83844 USA.
Nanoscale Adv. 2023 Jun 26;5(15):3964-3975. doi: 10.1039/d3na00249g. eCollection 2023 Jul 25.
Cobalt oxide nanoparticles are widely used owing to their distinct properties such as their larger surface area, enhanced reactivity, and their superior optical, electronic, and magnetic properties when compared to their bulk counterpart. The nanoparticles are preferably synthesized using a bottom-up approach in liquid as it allows the particle size to be more precisely controlled. In this study, we employed microplasma to synthesize CoO nanoparticles because it eliminates harmful reducing agents and is efficient and cost-effective. Microplasma reactors are equipped with copper wire electrodes to generate plasma and are simple to configure. The product was characterized using UV-Vis spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The experimental parameters that were varied for the synthesis were: with or without stirring, with or without indirect ultrasonication, and with or without capping agents (urea and sucrose). The results showed that the microplasma enabled CoO nanoparticles to be successfully synthesized, with particle sizes of 10.9-17.7 nm, depending on the synthesis conditions.
氧化钴纳米颗粒因其独特的性质而被广泛应用,这些性质包括比其块状对应物更大的表面积、更高的反应活性以及优异的光学、电子和磁性。纳米颗粒最好采用液相自下而上的方法合成,因为这样可以更精确地控制粒径。在本研究中,我们采用微等离子体来合成CoO纳米颗粒,因为它无需使用有害的还原剂,而且高效且具有成本效益。微等离子体反应器配备有铜线电极以产生等离子体,并且配置简单。使用紫外可见光谱、X射线衍射(XRD)、X射线光电子能谱(XPS)、场发射扫描电子显微镜(FESEM)和透射电子显微镜(TEM)对产物进行了表征。合成过程中变化的实验参数有:搅拌与否、间接超声处理与否以及封端剂(尿素和蔗糖)使用与否。结果表明,微等离子体能够成功合成CoO纳米颗粒,其粒径在10.9 - 17.7纳米之间,具体取决于合成条件。