Suppr超能文献

相互作用可积量子系统中的算符纠缠:规则54链的情况。

Operator Entanglement in Interacting Integrable Quantum Systems: The Case of the Rule 54 Chain.

作者信息

Alba V, Dubail J, Medenjak M

机构信息

Institute for Theoretical Physics, Universiteit van Amsterdam, Science Park 904, Postbus 94485, 1098 XH Amsterdam, Netherlands.

Laboratoire de Physique et Chimie Théoriques, CNRS, UMR 7019, Université de Lorraine, 54506 Vandoeuvre-les-Nancy, France.

出版信息

Phys Rev Lett. 2019 Jun 28;122(25):250603. doi: 10.1103/PhysRevLett.122.250603.

Abstract

In a many-body quantum system, local operators in the Heisenberg picture O(t)=e^{iHt}Oe^{-iHt} spread as time increases. Recent studies have attempted to find features of that spreading which could distinguish between chaotic and integrable dynamics. The operator entanglement-the entanglement entropy in operator space-is a natural candidate to provide such a distinction. Indeed, while it is believed that the operator entanglement grows linearly with time t in chaotic systems, we present evidence that it grows only logarithmically in generic interacting integrable systems. Although this logarithmic growth has been previously established for noninteracting fermions, there has been no progress on interacting integrable systems to date. In this Letter we provide an analytical upper bound on operator entanglement for all local operators in the "Rule 54" qubit chain, a cellular automaton model introduced in the 1990s [Bobenko et al., CMP 158, 127 (1993)CMPHAY0010-361610.1007/BF02097234], and recently advertised as the simplest representative of interacting integrable systems. Physically, the logarithmic bound originates from the fact that the dynamics of the models is mapped onto the one of stable quasiparticles that scatter elastically. The possibility of generalizing this scenario to other interacting integrable systems is briefly discussed.

摘要

在多体量子系统中,海森堡绘景下的局域算符(O(t)=e^{iHt}Oe^{-iHt})会随着时间的增加而扩散。最近的研究试图找出这种扩散的特征,以便区分混沌动力学和可积动力学。算符纠缠——算符空间中的纠缠熵——是提供这种区分的自然候选者。确实,虽然人们认为在混沌系统中算符纠缠随时间(t)线性增长,但我们给出的证据表明,在一般的相互作用可积系统中它仅对数增长。尽管这种对数增长此前已在非相互作用费米子系统中得到证实,但到目前为止,在相互作用可积系统方面尚无进展。在本快报中,我们给出了“规则54”量子比特链中所有局域算符的算符纠缠的解析上界,“规则54”量子比特链是20世纪90年代引入的一种元胞自动机模型[博本科等人,《数学物理通讯》158,127 (1993年)CMPHAY0010 - 361610.1007/BF02097234],并且最近被宣传为相互作用可积系统的最简单代表。从物理角度看,对数上界源于这样一个事实,即模型的动力学被映射到稳定准粒子的弹性散射动力学上。我们简要讨论了将这种情形推广到其他相互作用可积系统的可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验