Department of Physics and Astronomy, University of California, Irvine, California 92697, USA.
Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA.
Phys Rev Lett. 2019 Oct 25;123(17):170603. doi: 10.1103/PhysRevLett.123.170603.
We construct an interacting integrable Floquet model featuring quasiparticle excitations with topologically nontrivial chiral dispersion. This model is a fully quantum generalization of an integrable classical cellular automaton. We write down and solve the Bethe equations for the generalized quantum model and show that these take on a particularly simple form that allows for an exact solution: essentially, the quasiparticles behave like interacting hard rods. The generalized thermodynamics and hydrodynamics of this model follow directly, providing an exact description of interacting chiral particles in the thermodynamic limit. Although the model is interacting, its unusually simple structure allows us to construct operators that spread with no butterfly effect; this construction does not seem possible in other interacting integrable systems. This model exemplifies a new class of exactly solvable, interacting quantum systems specific to the Floquet setting.
我们构建了一个具有非平庸手性色散的准粒子激发的相互作用可积 Floquet 模型。该模型是可积经典元胞自动机的全量子推广。我们写出并求解了广义量子模型的 Bethe 方程,并表明它们具有特别简单的形式,允许精确求解:基本上,准粒子表现得像相互作用的硬棒。该模型的广义热力学和流体力学直接随之而来,为热力学极限下的相互作用手性粒子提供了精确的描述。尽管该模型是相互作用的,但它异常简单的结构允许我们构建没有蝴蝶效应的扩展算子;这种构造在其他相互作用的可积系统中似乎是不可能的。该模型是一类新的精确可解的 Floquet 体系中特有的相互作用量子系统的范例。