Grozdanov Sašo, Kovtun Pavel K, Starinets Andrei O, Tadić Petar
Center for Theoretical Physics, MIT, Cambridge, Massachusetts 02139, USA.
Department of Physics & Astronomy, University of Victoria, P.O. Box 1700 STN CSC, Victoria, British Columbia, V8W 2Y2, Canada.
Phys Rev Lett. 2019 Jun 28;122(25):251601. doi: 10.1103/PhysRevLett.122.251601.
Hydrodynamic excitations corresponding to sound and shear modes in fluids are characterized by gapless dispersion relations. In the hydrodynamic gradient expansion, their frequencies are represented by power series in spatial momenta. We investigate the analytic structure and convergence properties of the hydrodynamic series by studying the associated spectral curve in the space of complexified frequency and complexified spatial momentum. For the strongly coupled N=4 supersymmetric Yang-Mills plasma, we use the holographic duality methods to demonstrate that the derivative expansions have finite nonzero radii of convergence. Obstruction to the convergence of hydrodynamic series arises from level crossings in the quasinormal spectrum at complex momenta.
与流体中的声模和剪切模相对应的流体动力学激发由无隙色散关系表征。在流体动力学梯度展开中,它们的频率由空间动量的幂级数表示。我们通过研究复频率和复空间动量空间中的相关谱曲线,来研究流体动力学级数的解析结构和收敛性质。对于强耦合的N = 4超对称杨 - 米尔斯等离子体,我们使用全息对偶方法来证明导数展开具有有限的非零收敛半径。流体动力学级数收敛的障碍源于复动量处准正规模谱中的能级交叉。