Suppr超能文献

因果律允许的输运系数空间。

The space of transport coefficients allowed by causality.

作者信息

Heller Michal P, Serantes Alexandre, Spaliński Michał, Withers Benjamin

机构信息

Department of Physics and Astronomy, Ghent University, Ghent, Belgium.

Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos (ICCUB), Facultat de Física, Universitat de Barcelona, Barcelona, Spain.

出版信息

Nat Phys. 2024;20(12):1948-1954. doi: 10.1038/s41567-024-02635-5. Epub 2024 Oct 14.

Abstract

As an effective theory, relativistic hydrodynamics is fixed by symmetries up to a set of transport coefficients. A lot of effort has been devoted to explicit calculations of these coefficients. Here we adopt a more general approach, deploying bootstrap techniques to rule out theories that are inconsistent with microscopic causality. What remains is a universal convex geometry in the space of transport coefficients, which we call the hydrohedron. The landscape of all consistent theories necessarily lies inside or on the edges of the hydrohedron. We analytically construct cross-sections of the hydrohedron corresponding to bounds on transport coefficients that appear in sound and diffusion modes' dispersion relations for theories without stochastic fluctuations.

摘要

作为一种有效理论,相对论流体动力学由对称性确定,至多相差一组输运系数。人们已经投入了大量精力对这些系数进行显式计算。在这里,我们采用一种更通用的方法,运用自举技术来排除与微观因果性不一致的理论。剩下的是输运系数空间中的一种通用凸几何结构,我们称之为流体几何多面体。所有一致理论的范围必然位于流体几何多面体内或其边缘上。我们通过解析方法构建了与输运系数边界相对应的流体几何多面体的横截面,这些边界出现在无随机涨落理论的声模和扩散模色散关系中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/536e/11631764/56d84a32702f/41567_2024_2635_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验