Suppr超能文献

压力诱导小分子有机半导体热电功率因子的空前增强

Unprecedented Enhancement of Thermoelectric Power Factor Induced by Pressure in Small-Molecule Organic Semiconductors.

作者信息

Shi Wen, Deng Tianqi, Wu Gang, Hippalgaonkar Kedar, Wang Jian-Sheng, Yang Shuo-Wang

机构信息

Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore.

Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Republic of Singapore.

出版信息

Adv Mater. 2019 Sep;31(36):e1901956. doi: 10.1002/adma.201901956. Epub 2019 Jul 26.

Abstract

Establishing the relationship between pressure and heat-electricity interconversion in van der Waals bonded small-molecule organic semiconductors is critical not only in designing flexible thermoelectric materials, but also in developing organic electronics. Here, based on first-principles calculations and using naphthalene as a case study, an unprecedented elevation of p-type thermoelectric power factor induced by pressure is demonstrated; and the power factor increases by 267% from 159.5 µW m K under ambient conditions to 585.8 µW m K at 2.1 GPa. The underlying mechanism is attributed to the dramatic inhibition of lattice-vibration-caused electronic scattering. Furthermore, it is revealed that both restraining low-frequency intermolecular vibrational modes and increasing intermolecular electronic coupling are two essential factors that effectively suppress the electron-phonon scattering. From the standpoint of molecular design, these two conditions can be achieved by extending the π-conjugated backbones, introducing long alkyl sidechains to the π-cores, and substituting heteroatoms in the π-cores.

摘要

建立范德华键合小分子有机半导体中压力与热电相互转换之间的关系,不仅对于设计柔性热电材料至关重要,而且对于发展有机电子学也很关键。在此,基于第一性原理计算并以萘为例进行研究,结果表明压力可使p型热电功率因子出现前所未有的提升;功率因子从环境条件下的159.5 μW m⁻¹ K⁻²增加267%,在2.1 GPa时达到585.8 μW m⁻¹ K⁻²。其潜在机制归因于晶格振动引起的电子散射受到显著抑制。此外,研究还表明,抑制低频分子间振动模式和增强分子间电子耦合是有效抑制电子-声子散射的两个关键因素。从分子设计的角度来看,通过扩展π共轭主链、在π核上引入长烷基侧链以及在π核中取代杂原子,可实现这两个条件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验