Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.
Biochem Pharmacol. 2019 Oct;168:330-338. doi: 10.1016/j.bcp.2019.07.018. Epub 2019 Jul 23.
The signaling mechanisms of the angiotensin II type 2 receptor (ATR), a heptahelical receptor, have not yet been clearly and completely defined. In the present contribution, we set out to identify the molecular determinants involved in ATR activation. Although ATR has not been shown to engage G, G, G, and β-arrestin (βarr) pathways as does the ATR upon angiotensin II (AngII) stimulation, the atypical positioning of helix VIII in the recently published ATR structure may play a role in the receptor's capacity to couple to downstream effectors. In the ATR structure, helix VIII points inwards and towards intracellular loop 3 (ICL3) to form tertiary interactions with transmembrane domain 6 (TM6), possibly impeding access to signaling effectors. On the other hand, in most class A GPCRs, helix VIII is found to be engaged in tertiary interactions with ICL1 and away from the effector binding site. Upon closer examination of the ATR structure, we found that the residues contained within intracellular loop 1 (ICL1) may be involved in driving this unusual conformation of helix VIII. To explore this hypothesis, we designed a series of ATR/ATR receptor chimeras to validate the roles of ICL1 and helix VIII in ATR signaling. Substituting the ATR ICL1 into ATR led to a mutant receptor that coupled to G. The substitution of the helix VIII and C-terminal domains of ATR into the ATR backbone led to a mutant receptor that retained ATR-like signaling properties. These results suggest that the C-terminal portion of ATR is compatible with canonical GPCR signaling and that ICL1 of ATR is involved in repositioning helix VIII, which impedes engagement of classical GPCR effectors such as G proteins or βarrs.
血管紧张素 II 型受体(ATR)的信号转导机制尚未得到明确和完全的定义。在本研究中,我们旨在确定参与 ATR 激活的分子决定因素。尽管 ATR 不像血管紧张素 II(AngII)刺激下的 ATR 那样参与 G、G、G 和β-arrestin(βarr)途径,但最近发表的 ATR 结构中螺旋 VIII 的非典型位置可能在受体与下游效应物偶联的能力中发挥作用。在 ATR 结构中,螺旋 VIII 向内指向并朝向细胞内环 3(ICL3),与跨膜域 6(TM6)形成三级相互作用,可能阻碍信号效应物的进入。另一方面,在大多数 A 类 GPCR 中,螺旋 VIII 被发现与 ICL1 形成三级相互作用,远离效应物结合位点。在仔细研究 ATR 结构后,我们发现细胞内环 1(ICL1)内的残基可能参与驱动螺旋 VIII 的这种异常构象。为了验证 ICL1 和螺旋 VIII 在 ATR 信号转导中的作用,我们设计了一系列 ATR/ATR 受体嵌合体。将 ATR 的 ICL1 取代到 ATR 中导致一个与 G 偶联的突变受体。ATR 的螺旋 VIII 和 C 末端结构域取代到 ATR 骨架中导致一个保留 ATR 样信号特性的突变受体。这些结果表明 ATR 的 C 末端部分与经典 GPCR 信号兼容,并且 ATR 的 ICL1 参与重新定位螺旋 VIII,这阻碍了经典 GPCR 效应物如 G 蛋白或 βarrs 的结合。