Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany.
Department of Genetics, University of Utah, Salt Lake City, Utah 84112.
J Biol Chem. 2019 Sep 27;294(39):14185-14200. doi: 10.1074/jbc.RA119.009369. Epub 2019 Jul 26.
Recoding of UGA codons as selenocysteine (Sec) codons in selenoproteins depends on a selenocysteine insertion sequence (SECIS) in the 3'-UTR of mRNAs of eukaryotic selenoproteins. SECIS-binding protein 2 (SECISBP2) increases the efficiency of this process. Pathogenic mutations in reduce selenoprotein expression and lead to phenotypes associated with the reduction of deiodinase activities and selenoprotein N expression in humans. Two functions have been ascribed to SECISBP2: binding of SECIS elements in selenoprotein mRNAs and facilitation of co-translational Sec insertion. To separately probe both functions, we established here two mouse models carrying two pathogenic missense mutations in previously identified in patients. We found that the C696R substitution in the RNA-binding domain abrogates SECIS binding and does not support selenoprotein translation above the level of a complete null mutation. The R543Q missense substitution located in the selenocysteine insertion domain resulted in residual activity and caused reduced selenoprotein translation, as demonstrated by ribosomal profiling to determine the impact on UGA recoding in individual selenoproteins. We found, however, that the R543Q variant is thermally unstable and completely degraded in the mouse liver , while being partially functional in the brain. The moderate impairment of selenoprotein expression in neurons led to astrogliosis and transcriptional induction of genes associated with immune responses. We conclude that differential SECISBP2 protein stability in individual cell types may dictate clinical phenotypes to a much greater extent than molecular interactions involving a mutated amino acid in SECISBP2.
UGA 密码子被重新编码为硒代半胱氨酸(Sec)密码子依赖于真核生物硒蛋白 mRNA 的 3'-UTR 中的硒代半胱氨酸插入序列(SECIS)。SECIS 结合蛋白 2(SECISBP2)提高了这一过程的效率。 中的致病突变降低了硒蛋白的表达,并导致与人类脱碘酶活性和硒蛋白 N 表达减少相关的表型。SECISBP2 被赋予了两种功能:结合硒蛋白 mRNA 中的 SECIS 元件和促进共翻译 Sec 插入。为了分别探测这两种功能,我们在这里建立了两个携带先前在患者中发现的 中两个致病错义突变的小鼠模型。我们发现,RNA 结合结构域中的 C696R 取代会破坏 SECIS 结合,并且不能支持硒蛋白翻译超过完全 缺失突变的水平。位于硒代半胱氨酸插入结构域中的 R543Q 错义取代导致残留活性,并导致硒蛋白翻译减少,如通过核糖体谱分析确定对个体硒蛋白中 UGA 重编码的影响所示。然而,我们发现 R543Q 变体在小鼠肝脏中是热不稳定的 ,并且完全降解,而在大脑中则具有部分功能。神经元中硒蛋白表达的中度受损导致星形胶质细胞增生和与免疫反应相关的基因的转录诱导。我们得出结论,个体细胞类型中 SECISBP2 蛋白稳定性的差异可能在更大程度上决定了临床表型,而不是 SECISBP2 中突变氨基酸涉及的分子相互作用。