Suppr超能文献

通过最小化轨道角动量来设计电子结构以延长分子量子比特的弛豫时间。

Engineering electronic structure to prolong relaxation times in molecular qubits by minimising orbital angular momentum.

作者信息

Ariciu Ana-Maria, Woen David H, Huh Daniel N, Nodaraki Lydia E, Kostopoulos Andreas K, Goodwin Conrad A P, Chilton Nicholas F, McInnes Eric J L, Winpenny Richard E P, Evans William J, Tuna Floriana

机构信息

School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

出版信息

Nat Commun. 2019 Jul 26;10(1):3330. doi: 10.1038/s41467-019-11309-3.

Abstract

The proposal that paramagnetic transition metal complexes could be used as qubits for quantum information processing (QIP) requires that the molecules retain the spin information for a sufficient length of time to allow computation and error correction. Therefore, understanding how the electron spin-lattice relaxation time (T) and phase memory time (T) relate to structure is important. Previous studies have focused on the ligand shell surrounding the paramagnetic centre, seeking to increase rigidity or remove elements with nuclear spins or both. Here we have studied a family of early 3d or 4f metals in the +2 oxidation states where the ground state is effectively a S state. This leads to a highly isotropic spin and hence makes the putative qubit insensitive to its environment. We have studied how this influences T and T and show unusually long relaxation times given that the ligand shell is rich in nuclear spins and non-rigid.

摘要

顺磁性过渡金属配合物可作为量子信息处理(QIP)的量子比特这一提议,要求分子能够在足够长的时间内保留自旋信息,以便进行计算和纠错。因此,了解电子自旋 - 晶格弛豫时间(T)和相位记忆时间(T)如何与结构相关很重要。先前的研究集中在顺磁中心周围的配体壳层,试图增加其刚性或去除具有核自旋的元素或两者兼而有之。在这里,我们研究了处于 +2 氧化态的一族早期 3d 或 4f 金属,其基态实际上是一个 S 态。这导致了高度各向同性的自旋,因此使假定的量子比特对其环境不敏感。我们研究了这如何影响 T 和 T,并表明鉴于配体壳层富含核自旋且不刚性,弛豫时间异常长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a76/6659626/e905826cd109/41467_2019_11309_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验