Espinosa Matthew R, Guerrero Fernando, Kazmierczak Nathanael P, Oyala Paul H, Hong Alexandria, Hadt Ryan G, Agapie Theodor
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
J Am Chem Soc. 2025 Apr 30;147(17):14036-14042. doi: 10.1021/jacs.5c00803. Epub 2025 Apr 18.
Paramagnetic transition metal complexes can serve as quantum bits, storing phase information through unpaired electrons. Despite their promise, these systems often require low temperatures and tend to rapidly decohere. Recent efforts have sought to improve longitudinal relaxation (), which provides an upper limit for phase coherence (), by investigating existing literature compounds with reduced vibrational coupling and orbital angular momentum. However, synthetic strategies for improving through novel ligand design have remained scant. Here, we disclose the synthesis of a new modular macrocyclic ligand framework with four nitrogen donors (N) derived from phenanthroline that supports room-temperature coherent Cu(II) spin centers. The optimized complex more than doubles the over the next best Cu(II)-N compound and exhibits a room temperature coherence time () of 0.28 μs, close to previously reported values. This performance enhancement arises from a tight binding site with short Cu-N distances, resulting in a stronger ligand field and reduced thermal accessibility of symmetric vibrational modes. This work demonstrates a practical approach to enabling spin coherence at room temperature, a factor critical to accessing relevant quantum bits and biological sensors, through a designer macrocyclic ligand platform.
顺磁性过渡金属配合物可作为量子比特,通过未成对电子存储相位信息。尽管它们前景广阔,但这些系统通常需要低温且往往会迅速退相干。最近的研究致力于通过研究具有减少振动耦合和轨道角动量的现有文献化合物来改善纵向弛豫(),纵向弛豫为相位相干()提供了一个上限。然而,通过新型配体设计来改善的合成策略仍然很少。在这里,我们披露了一种新的模块化大环配体框架的合成,该框架具有四个源自菲咯啉的氮供体(N),可支持室温下相干的Cu(II)自旋中心。优化后的配合物比下一个最佳的Cu(II)-N化合物的提高了一倍多,并表现出0.28 μs的室温相干时间(),接近先前报道的值。这种性能提升源于具有短Cu-N距离的紧密结合位点,从而产生更强的配体场并降低对称振动模式的热可及性。这项工作展示了一种切实可行的方法,即通过设计的大环配体平台在室温下实现自旋相干,这是访问相关量子比特和生物传感器的关键因素。