Suppr超能文献

基于葡萄糖反应酶的生物燃料电池系统在生物医学应用中的性能。

Performance of a glucose-reactive enzyme-based biofuel cell system for biomedical applications.

机构信息

Department of Chemistry, College of Natural Science, Dankook University, Chungnam, Cheonan, 31116, Republic of Korea.

Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Chungnam, Cheonan, 31116, Republic of Korea.

出版信息

Sci Rep. 2019 Jul 26;9(1):10872. doi: 10.1038/s41598-019-47392-1.

Abstract

A glucose-reactive enzyme-based biofuel cell system (EBFC) was recently introduced in the scientific community for biomedical applications, such as implantable artificial organs and biosensors for drug delivery. Upon direct contact with tissues or organs, an implanted EBFC can exert effects that damage or stimulate intact tissue due to its byproducts or generated electrical cues, which have not been investigated in detail. Here, we perform a fundamental cell culture study using a glucose dehydrogenase (GDH) as an anode enzyme and bilirubin oxidase (BOD) as a cathode enzyme. The fabricated EBFC had power densities of 15.26 to 38.33 nW/cm depending on the enzyme concentration in media supplemented with 25 mM glucose. Despite the low power density, the GDH-based EBFC showed increases in cell viability (150%) and cell migration (90%) with a relatively low inflammatory response. However, glucose oxidase (GOD), which has been used as an EBFC anode enzyme, revealed extreme cytotoxicity (10%) due to the lethal concentration of HO byproducts (1500 µM). Therefore, with its cytocompatibility and cell-stimulating effects, the GDH-based EBFC is considered a promising implantable tool for generating electricity for biomedical applications. Finally, the GDH-based EBFC can be used for introducing electricity during cell culture and the fabrication of organs on a chip and a power source for implantable devices such as biosensors, biopatches, and artificial organs.

摘要

一种基于葡萄糖反应酶的生物燃料电池系统 (EBFC) 最近在科学界被引入,用于生物医学应用,如可植入人工器官和药物输送的生物传感器。在与组织或器官直接接触时,由于其副产物或产生的电信号,植入的 EBFC 可能会对完整组织造成损伤或刺激,但其影响尚未得到详细研究。在这里,我们使用葡萄糖脱氢酶 (GDH) 作为阳极酶和胆红素氧化酶 (BOD) 作为阴极酶进行了基本的细胞培养研究。所制造的 EBFC 在补充有 25mM 葡萄糖的介质中,根据酶浓度的不同,其功率密度为 15.26 至 38.33 nW/cm。尽管功率密度较低,但基于 GDH 的 EBFC 显示出细胞活力增加 (150%) 和细胞迁移增加 (90%),同时炎症反应相对较低。然而,作为 EBFC 阳极酶使用的葡萄糖氧化酶 (GOD) 由于 HO 副产物 (1500µM) 的致死浓度而表现出极高的细胞毒性 (10%)。因此,基于 GDH 的 EBFC 具有细胞相容性和细胞刺激作用,被认为是一种有前途的可植入工具,可用于为生物医学应用产生电能。最后,基于 GDH 的 EBFC 可用于在细胞培养期间引入电能,以及制造芯片上的器官和可植入设备(如生物传感器、生物贴剂和人工器官)的电源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52c4/6659637/c9f8808441d3/41598_2019_47392_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验