Suppr超能文献

重新配方的三氧化矿物凝聚体成分及其作为未来牙科再生水泥的应用评估。

Reformulated mineral trioxide aggregate components and the assessments for use as future dental regenerative cements.

作者信息

Moon Ho-Jin, Lee Jung-Hwan, Kim Joong-Hyun, Knowles Jonathan C, Cho Yong-Bum, Shin Dong-Hoon, Lee Hae-Hyoung, Kim Hae-Won

机构信息

Department of Conservative Dentistry, College of Dentistry, Dankook University, Cheonan, Republic of Korea.

Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.

出版信息

J Tissue Eng. 2018 Oct 30;9:2041731418807396. doi: 10.1177/2041731418807396. eCollection 2018 Jan-Dec.

Abstract

Mineral trioxide aggregate, which comprises three major inorganic components, namely, tricalcium silicate (C3S), dicalcium silicate (C2S), and tricalcium aluminate (C3A), is promising regenerative cement for dentistry. While mineral trioxide aggregate has been successfully applied in retrograde filling, the exact role of each component in the mineral trioxide aggregate system is largely unexplored. In this study, we individually synthesized the three components, namely, C3S, C2A, and C3A, and then mixed them to achieve various compositions (a total of 14 compositions including those similar to mineral trioxide aggregate). All powders were fabricated to obtain high purity. The setting reaction of all cement compositions was within 40 min, which is shorter than for commercial mineral trioxide aggregate (~150 min). Over time, the pH of the composed cements initially showed an abrupt increase and then plateaued (pH 10-12), which is a typical behavior of mineral trioxide aggregate. The compression and tensile strength of the composed cements increased (2-4 times the initial values) with time for up to 21 days in an aqueous medium, the degree to which largely depended on the composition. The cell viability test with rat mesenchymal stem cells revealed no toxicity for any composition except C3A, which contained aluminum. To confirm the in vivo biological response, cement was retro-filled into an extracted rat tooth and the complex was re-implanted. Four weeks post-operation, histological assessments revealed that C3A caused significant tissue toxicity, while good tissue compatibility was observed with the other compositions. Taken together, these results reveal that of the three major constituents of mineral trioxide aggregate, C3A generated significant toxicity in vitro and in vivo, although it accelerated setting time. This study highlights the need for careful consideration with regard to the composition of mineral trioxide aggregate, and if possible (when other properties are satisfactory), the C3A component should be avoided, which can be achieved by the mixture of individual components.

摘要

矿物三氧化物凝聚体由三种主要无机成分组成,即硅酸三钙(C3S)、硅酸二钙(C2S)和铝酸三钙(C3A),是一种很有前景的牙科再生水泥。虽然矿物三氧化物凝聚体已成功应用于根管倒充填,但各成分在矿物三氧化物凝聚体系统中的确切作用在很大程度上仍未得到探索。在本研究中,我们分别合成了这三种成分,即C3S、C2S和C3A,然后将它们混合以获得各种组成(总共14种组成,包括那些与矿物三氧化物凝聚体相似的组成)。所有粉末均制备成高纯度。所有水泥组合物的凝结反应在40分钟内完成,这比市售矿物三氧化物凝聚体(约150分钟)要短。随着时间的推移,所组成水泥的pH值最初急剧上升,然后趋于平稳(pH值为10 - 12),这是矿物三氧化物凝聚体的典型行为。在所组成的水泥中,抗压强度和抗拉强度在水介质中随时间增加(初始值的2 - 4倍),持续长达21天,其增加程度在很大程度上取决于组成。对大鼠间充质干细胞进行的细胞活力测试表明,除含铝的C3A外,任何组成均无毒性。为了确认体内生物学反应,将水泥逆行充填到拔除的大鼠牙齿中,并将复合体重新植入。术后四周,组织学评估显示C3A引起显著的组织毒性,而其他组成则表现出良好的组织相容性。综上所述,这些结果表明,在矿物三氧化物凝聚体的三种主要成分中,C3A虽然加速了凝结时间,但在体外和体内均产生了显著的毒性。本研究强调了在考虑矿物三氧化物凝聚体的组成时需要谨慎,如果可能的话(当其他性能令人满意时),应避免使用C3A成分,这可以通过混合各成分来实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25a0/6207958/9e8b4890ed74/10.1177_2041731418807396-fig1.jpg

相似文献

1
Reformulated mineral trioxide aggregate components and the assessments for use as future dental regenerative cements.
J Tissue Eng. 2018 Oct 30;9:2041731418807396. doi: 10.1177/2041731418807396. eCollection 2018 Jan-Dec.
2
Preparation and properties of tristrontium aluminate as an alternative component of mineral trioxide aggregate (MTA) cement.
Dent Mater J. 2021 Jan 31;40(1):184-190. doi: 10.4012/dmj.2019-414. Epub 2020 Sep 29.
3
Effect of endodontic cement on bone mineral density using serial dual-energy x-ray absorptiometry.
J Endod. 2014 May;40(5):648-51. doi: 10.1016/j.joen.2013.11.025. Epub 2014 Jan 3.
4
Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus.
Dent Mater. 2013 May;29(5):580-93. doi: 10.1016/j.dental.2013.03.007. Epub 2013 Mar 26.
5
The chemical composition of mineral trioxide aggregate.
J Conserv Dent. 2008 Oct;11(4):141-3. doi: 10.4103/0972-0707.48834.
6
Three-dimensional culture of dental pulp stem cells in direct contact to tricalcium silicate cements.
Clin Oral Investig. 2016 Mar;20(2):237-46. doi: 10.1007/s00784-015-1515-3. Epub 2015 Jul 1.

引用本文的文献

1
Physical, chemical and biological properties of MTA Angelus and novel AGM MTA: an in vitro analysis.
BMC Oral Health. 2025 Jan 27;25(1):145. doi: 10.1186/s12903-025-05517-1.
5
Synthesis of a Calcium Silicate Cement Containing a Calcinated Strontium Silicate Phase.
Int J Dent. 2024 Jan 25;2024:8875014. doi: 10.1155/2024/8875014. eCollection 2024.
8
biocompatibility and bioactivity of calcium silicate‑based bioceramics in endodontics (Review).
Int J Mol Med. 2021 Jul;48(1). doi: 10.3892/ijmm.2021.4961. Epub 2021 May 20.
9
Physical Properties and Biofunctionalities of Bioactive Root Canal Sealers In Vitro.
Nanomaterials (Basel). 2020 Sep 4;10(9):1750. doi: 10.3390/nano10091750.

本文引用的文献

1
Regenerative endodontics: a comprehensive review.
Int Endod J. 2018 Dec;51(12):1367-1388. doi: 10.1111/iej.12954. Epub 2018 Jun 11.
2
Nanocements produced from mesoporous bioactive glass nanoparticles.
Biomaterials. 2018 Apr;162:183-199. doi: 10.1016/j.biomaterials.2018.02.005. Epub 2018 Feb 3.
3
Compositional dependency on dissolution rate and cytocompatibility of phosphate-based glasses: Effect of BO and FeO addition.
J Tissue Eng. 2017 Dec 11;8:2041731417744454. doi: 10.1177/2041731417744454. eCollection 2017 Jan-Dec.
4
Bioactive calcium phosphate-based glasses and ceramics and their biomedical applications: A review.
J Tissue Eng. 2017 Jul 21;8:2041731417719170. doi: 10.1177/2041731417719170. eCollection 2017 Jan-Dec.
5
Drug/ion co-delivery multi-functional nanocarrier to regenerate infected tissue defect.
Biomaterials. 2017 Oct;142:62-76. doi: 10.1016/j.biomaterials.2017.07.014. Epub 2017 Jul 12.
7
Therapeutic potential of dental stem cells.
J Tissue Eng. 2017 May 23;8:2041731417702531. doi: 10.1177/2041731417702531. eCollection 2017 Jan-Dec.
9
A mini review focused on the proangiogenic role of silicate ions released from silicon-containing biomaterials.
J Tissue Eng. 2017 May 15;8:2041731417707339. doi: 10.1177/2041731417707339. eCollection 2017 Jan-Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验