Suppr超能文献

单通道表面肌电图分解以探索运动单位放电。

Single channel surface electromyogram deconvolution to explore motor unit discharges.

机构信息

Mathematical Biology and Physiology, Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy.

出版信息

Med Biol Eng Comput. 2019 Sep;57(9):2045-2054. doi: 10.1007/s11517-019-02010-0. Epub 2019 Jul 27.

Abstract

Interference surface electromyogram (EMG) reflects many bioelectric properties of active motor units (MU), which are however difficult to estimate due to the asynchronous summation of their discharges. This paper introduces a deconvolution technique to estimate the cumulative firings of MUs. Tests in simulations show that the power spectral density of the estimated MU firings has a low-frequency peak corresponding to the mean firing rate of MUs in the detection volume of the recording system, weighted by the amplitudes of MU action potentials. The peak increases in amplitude and its centroid shifts to a higher frequency when MU synchronization is simulated (mainly due to the shift of discharges of large MUs). The peak is found even at high force levels, when such a contribution does not emerge from the EMG. This result is also confirmed in preliminary applications to experimental data. Moreover, the simulated cumulative firings of MUs are estimated with a correlation above 90% (considering frequency contributions up to 150 Hz), for all force levels. The method requires a single EMG channel, thus being feasible even in applied studies using simple recording systems. It may open many potential applications, e.g., in the study of the modulation of MU firing rate induced by either fatigue or pathology and in coherency analysis. Graphical Abstract Examples of application of the deconvolution (Deconv) algorithm and comparison with the cumulative firings and the cumulated weighted firings (CWF, i.e., each firing pattern is weighted by the root mean squared amplitude of the corresponding MU action potential). Portions of data are shown on the left, the power spectral densities (PSD) on the right (Welch method applied to 3 s of data, sub-epochs of 0.5 s, mean value removed from each of them, 50% of overlap). A) Simulated signal (50% of maximal voluntary contraction, MVC) with random MU firings. B) Simulated signal (50% MVC) with a level of synchronization equal to 10%. C) Experimental data from vastus medialis at 40% MVC (data decomposed by the algorithm of Holobar and Zazula, IEEE Trans. Sig. Proc. 2007; PSD of the cumulated firings almost identical to that of CWF, as few MUs were identified).

摘要

干扰表面肌电图 (EMG) 反映了主动运动单位 (MU) 的许多生物电特性,但由于其放电的异步总和,这些特性很难估计。本文介绍了一种去卷积技术来估计 MU 的累积放电。在模拟测试中,结果表明,估计 MU 放电的功率谱密度具有低频峰值,该峰值对应于记录系统检测体积内 MU 的平均放电率,由 MU 动作电位的幅度加权。当模拟 MU 同步时,峰值的幅度增加,其质心向更高的频率移动(主要是由于大 MU 的放电转移)。即使在高力水平下,也会出现这种峰值,而在 EMG 中则不会出现这种峰值。这一结果在初步应用于实验数据时也得到了证实。此外,对于所有力水平,模拟 MU 的累积放电都可以以高于 90%的相关性进行估计(考虑到高达 150 Hz 的频率贡献)。该方法仅需要单个 EMG 通道,因此即使在使用简单记录系统的应用研究中也具有可行性。它可能会开辟许多潜在的应用,例如,在研究由疲劳或病理学引起的 MU 放电率调制以及相干性分析方面。

图形摘要

去卷积 (Deconv) 算法的应用示例,并与累积放电和累积加权放电 (CWF) 进行比较(即,每个放电模式都由相应 MU 动作电位的均方根幅度加权)。数据的一部分显示在左侧,功率谱密度 (PSD) 显示在右侧(Welch 方法应用于 3 s 的数据,子时段为 0.5 s,从每个子时段中减去平均值,重叠率为 50%)。A) 最大随意收缩 (MVC) 的 50% 的模拟信号,具有随机 MU 放电。B) MVC 的 50% 的模拟信号,同步水平为 10%。C) 股直肌在 40% MVC 时的实验数据(数据由 Holobar 和 Zazula 的算法分解,IEEE Trans. Sig.Proc. 2007;累积放电的 PSD 几乎与 CWF 的相同,因为只识别了少数 MU)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验