Suppr超能文献

横断面研究中鉴定的衰老生物标志物往往是非因果性的。

Biomarkers for Aging Identified in Cross-sectional Studies Tend to Be Non-causative.

机构信息

Department of Ecology and Evolutionary Biology, University of Arizona, Tucson.

Departments of Pathology and Biology, University of Washington, Seattle.

出版信息

J Gerontol A Biol Sci Med Sci. 2020 Feb 14;75(3):466-472. doi: 10.1093/gerona/glz174.

Abstract

Biomarkers are important tools for diagnosis, prognosis, and identification of the causal factors of physiological conditions. Biomarkers are typically identified by correlating biological measurements with the status of a condition in a sample of subjects. Cross-sectional studies sample subjects at a single timepoint, whereas longitudinal studies follow a cohort through time. Identifying biomarkers of aging is subject to unique challenges. Individuals who age faster have intrinsically higher mortality rates and so are preferentially lost over time, in a phenomenon known as cohort selection. In this article, we use simulations to show that cohort selection biases cross-sectional analysis away from identifying causal loci of aging, to the point where cross-sectional studies are less likely to identify loci that cause aging than if loci had been chosen at random. We go on to show this bias can be corrected by incorporating correlates of mortality identified from longitudinal studies, allowing cross-sectional studies to effectively identify the causal factors of aging.

摘要

生物标志物是诊断、预后和确定生理状况因果因素的重要工具。生物标志物通常通过将生物学测量与样本中某一状况的状态相关联来确定。横断面研究在单个时间点采集样本,而纵向研究则随着时间推移跟踪一个队列。确定衰老的生物标志物面临独特的挑战。衰老速度较快的个体固有死亡率较高,因此随着时间的推移,它们会被优先淘汰,这一现象称为队列选择。在本文中,我们使用模拟表明,队列选择会使横断面分析偏离衰老因果基因座的识别,以至于横断面研究识别导致衰老的基因座的可能性甚至低于随机选择基因座。我们进一步表明,通过纳入纵向研究中确定的死亡率相关因素,可以纠正这种偏差,使横断面研究能够有效地识别衰老的因果因素。

相似文献

1
Biomarkers for Aging Identified in Cross-sectional Studies Tend to Be Non-causative.
J Gerontol A Biol Sci Med Sci. 2020 Feb 14;75(3):466-472. doi: 10.1093/gerona/glz174.
2
Epigenetic drift in the aging genome: a ten-year follow-up in an elderly twin cohort.
Int J Epidemiol. 2016 Aug;45(4):1146-1158. doi: 10.1093/ije/dyw132. Epub 2016 Aug 6.
3
Evaluation of selection bias in a cross-sectional survey.
Am J Ind Med. 1991;20(5):615-27. doi: 10.1002/ajim.4700200505.
5
[Analysis of selection bias in the pilot study of a longitudinal study on aging in Spain].
Gac Sanit. 2013 Sep-Oct;27(5):425-32. doi: 10.1016/j.gaceta.2012.11.008. Epub 2013 Jan 3.
6
Change in Epigenome-Wide DNA Methylation Over 9 Years and Subsequent Mortality: Results From the InCHIANTI Study.
J Gerontol A Biol Sci Med Sci. 2016 Aug;71(8):1029-35. doi: 10.1093/gerona/glv118. Epub 2015 Sep 9.
8
Child anthropometry in cross-sectional surveys in developing countries: an assessment of the survivor bias.
Am J Epidemiol. 1992 Feb 15;135(4):438-49. doi: 10.1093/oxfordjournals.aje.a116304.
9
Tick tock: DNA methylation, the epigenetic clock and exceptional longevity.
Epigenomics. 2016 Dec;8(12):1577-1582. doi: 10.2217/epi-2016-0137. Epub 2016 Nov 18.
10
An epigenetic biomarker of aging for lifespan and healthspan.
Aging (Albany NY). 2018 Apr 18;10(4):573-591. doi: 10.18632/aging.101414.

引用本文的文献

3
Epigenetic Clocks Relate to 4 Age-related Health Outcomes Similarly Across 3 Countries.
J Gerontol A Biol Sci Med Sci. 2025 Jun 10;80(7). doi: 10.1093/gerona/glaf036.
5
Cross-trait multivariate GWAS confirms health implications of pubertal timing.
Nat Commun. 2025 Jan 18;16(1):799. doi: 10.1038/s41467-025-56191-4.
6
Spatial transcriptomic clocks reveal cell proximity effects in brain ageing.
Nature. 2025 Feb;638(8049):160-171. doi: 10.1038/s41586-024-08334-8. Epub 2024 Dec 18.
8
Protein catabolites as blood-based biomarkers of aging physiology: Findings from the Dog Aging Project.
bioRxiv. 2024 Oct 21:2024.10.17.618956. doi: 10.1101/2024.10.17.618956.
10
Lagged effects of childhood depressive symptoms on adult epigenetic aging.
Psychol Med. 2024 Oct 7;54(12):1-9. doi: 10.1017/S0033291724001570.

本文引用的文献

1
Multimorbidity and Cognitive Decline Over 14 Years in Older Americans.
J Gerontol A Biol Sci Med Sci. 2020 May 22;75(6):1206-1213. doi: 10.1093/gerona/glz147.
3
A Systematic Review and Meta-analysis of Environmental, Lifestyle, and Health Factors Associated With DNA Methylation Age.
J Gerontol A Biol Sci Med Sci. 2020 Feb 14;75(3):481-494. doi: 10.1093/gerona/glz099.
4
Machine Learning in Aging Research.
J Gerontol A Biol Sci Med Sci. 2019 Nov 13;74(12):1901-1902. doi: 10.1093/gerona/glz074.
5
Frailty Index and Sex-Specific 6-Year Mortality in Community-Dwelling Older People: The ActiFE Study.
J Gerontol A Biol Sci Med Sci. 2020 Jan 20;75(2):366-373. doi: 10.1093/gerona/glz051.
6
Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and studies.
Aging (Albany NY). 2018 Jul 26;10(7):1758-1775. doi: 10.18632/aging.101508.
7
An epigenetic biomarker of aging for lifespan and healthspan.
Aging (Albany NY). 2018 Apr 18;10(4):573-591. doi: 10.18632/aging.101414.
8
DNA methylation-based biomarkers and the epigenetic clock theory of ageing.
Nat Rev Genet. 2018 Jun;19(6):371-384. doi: 10.1038/s41576-018-0004-3.
9
United States Life Tables, 2014.
Natl Vital Stat Rep. 2017 Aug;66(4):1-64.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验