Hill Physicians Medical Group, Population Health, San Ramon.
Division of Research, Kaiser Permanente Northern California, Oakland, CA.
Med Care. 2019 Sep;57(9):702-709. doi: 10.1097/MLR.0000000000001159.
As part of a multidisciplinary team managing patients with type-2 diabetes, pharmacists need a consistent approach of identifying and prioritizing patients at highest risk of adverse outcomes. Our objective was to identify which predictors of adverse outcomes among type-2 diabetes patients were significant and common across 7 outcomes and whether these predictors improved the performance of risk prediction models. Identifying such predictors would allow pharmacists and other health care providers to prioritize their patient panels.
Our study population included 120,256 adults aged 65 years or older with type-2 diabetes from a large integrated health system. Through an observational retrospective cohort study design, we assessed which risk factors were associated with 7 adverse outcomes (hypoglycemia, hip fractures, syncope, emergency department visit or hospital admission, death, and 2 combined outcomes). We split (50:50) our study cohort into a test and training set. We used logistic regression to model outcomes in the test set and performed k-fold validation (k=5) of the combined outcome (without death) within the validation set.
The most significant predictors across the 7 outcomes were: age, number of medicines, prior history of outcome within the past 2 years, chronic kidney disease, depression, and retinopathy. Experiencing an adverse outcome within the prior 2 years was the strongest predictor of future adverse outcomes (odds ratio range: 4.15-7.42). The best performing models across all outcomes included: prior history of outcome, physiological characteristics, comorbidities and pharmacy-specific factors (c-statistic range: 0.71-0.80).
Pharmacists and other health care providers can use models with prior history of adverse event, number of medicines, chronic kidney disease, depression and retinopathy to prioritize interventions for elderly patients with type-2 diabetes.
作为多学科团队管理 2 型糖尿病患者的一部分,药剂师需要采用一致的方法来识别和优先考虑发生不良结局风险最高的患者。我们的目的是确定 2 型糖尿病患者的哪些不良结局预测因素在 7 种结局中具有重要意义且普遍存在,以及这些预测因素是否能改善风险预测模型的性能。确定这些预测因素将使药剂师和其他医疗保健提供者能够为其患者群体确定优先级。
我们的研究人群包括来自大型综合医疗系统的 120,256 名年龄在 65 岁及以上的 2 型糖尿病成人。通过观察性回顾性队列研究设计,我们评估了哪些危险因素与 7 种不良结局(低血糖、髋部骨折、晕厥、急诊就诊或住院、死亡和 2 种联合结局)相关。我们将研究队列(50:50)分为测试集和训练集。我们使用逻辑回归模型在测试集中对结局进行建模,并在验证集中(不包括死亡)对合并结局(不包括死亡)进行 5 折验证(k=5)。
在 7 种结局中,最显著的预测因素是:年龄、用药数量、过去 2 年内的结局史、慢性肾脏病、抑郁症和视网膜病变。在过去 2 年内发生不良结局是未来发生不良结局的最强预测因素(比值比范围:4.15-7.42)。在所有结局中表现最好的模型包括:过去的结局史、生理特征、合并症和药房特定因素(C 统计量范围:0.71-0.80)。
药剂师和其他医疗保健提供者可以使用包含不良事件史、用药数量、慢性肾脏病、抑郁症和视网膜病变的模型来为老年 2 型糖尿病患者确定干预措施的优先级。