Suppr超能文献

用于识别急性踝关节扭伤患者不良结局风险的预测模型:SPRAINED 研究的开发和外部验证。

Prognostic models for identifying risk of poor outcome in people with acute ankle sprains: the SPRAINED development and external validation study.

机构信息

Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.

Department of Sport, Health Sciences and Social Work, Oxford Brookes University, Oxford, UK.

出版信息

Health Technol Assess. 2018 Nov;22(64):1-112. doi: 10.3310/hta22640.

Abstract

BACKGROUND

Ankle sprains are very common injuries. Although recovery can occur within weeks, around one-third of patients have longer-term problems.

OBJECTIVES

To develop and externally validate a prognostic model for identifying people at increased risk of poor outcome after an acute ankle sprain.

DESIGN

Development of a prognostic model in a clinical trial cohort data set and external validation in a prospective cohort study.

SETTING

Emergency departments (EDs) in the UK.

PARTICIPANTS

Adults with an acute ankle sprain (within 7 days of injury).

SAMPLE SIZE

There were 584 clinical trial participants in the development data set and 682 recruited for the external validation study.

PREDICTORS

Candidate predictor variables were chosen based on availability in the clinical data set, clinical consensus, face validity, a systematic review of the literature, data quality and plausibility of predictiveness of the outcomes.

MAIN OUTCOME MEASURES

Models were developed to predict two composite outcomes representing poor outcome. Outcome 1 was the presence of at least one of the following symptoms at 9 months after injury: persistent pain, functional difficulty or lack of confidence. Outcome 2 included the same symptoms as outcome 1, with the addition of recurrence of injury. Rates of poor outcome in the external data set were lower than in the development data set, 7% versus 20% for outcome 1 and 16% versus 24% for outcome 2.

ANALYSIS

Multiple imputation was used to handle missing data. Logistic regression models, together with multivariable fractional polynomials, were used to select variables and identify transformations of continuous predictors that best predicted the outcome based on a nominal alpha of 0.157, chosen to minimise overfitting. Predictive accuracy was evaluated by assessing model discrimination (-statistic) and calibration (flexible calibration plot).

RESULTS

(1) Performance of the prognostic models in development data set - the combined -statistic for the outcome 1 model across the 50 imputed data sets was 0.74 [95% confidence interval (CI) 0.70 to 0.79], with good model calibration across the imputed data sets. The combined -statistic for the outcome 2 model across the 50 imputed data sets was 0.70 (95% CI 0.65 to 0.74), with good model calibration across the imputed data sets. Updating these models, which used baseline data collected at the ED, with an additional variable at 4 weeks post injury (pain when bearing weight on the ankle) improved the discriminatory ability (-statistic 0.77, 95% CI 0.73 to 0.82, for outcome 1 and 0.75, 95% CI 0.71 to 0.80, for outcome 2) and calibration of both models. (2) Performance of the models in the external data set - the combined -statistic for the outcome 1 model across the 50 imputed data sets was 0.73 (95% CI 0.66 to 0.79), with a calibration plot intercept of -0.91 (95% CI -0.98 to 0.44) and slope of 1.13 (95% CI 0.76 to 1.50). The combined -statistic for the outcome 2 model across the 50 imputed data sets was 0.63 (95% CI 0.58 to 0.69), with a calibration plot intercept of -0.25 (95% CI -0.27 to 0.11) and slope of 1.03 (95% CI 0.65 to 1.42). The updated models with the additional pain variable at 4 weeks had improved discriminatory ability over the baseline models but not better calibration.

CONCLUSIONS

The SPRAINED (Synthesising a clinical Prognostic Rule for Ankle Injuries in the Emergency Department) prognostic models performed reasonably well, and showed benefit compared with not using any model; therefore, the models may assist clinical decision-making when managing and advising ankle sprain patients in the ED setting. The models use predictors that are simple to obtain.

LIMITATIONS

The data used were from a randomised controlled trial and so were not originally intended to fulfil the aim of developing prognostic models. However, the data set was the best available, including data on the symptoms and clinical events of interest.

FUTURE WORK

Further model refinement, including recalibration or identifying additional predictors, may be required. The effect of implementing and using either model in clinical practice, in terms of acceptability and uptake by clinicians and on patient outcomes, should be investigated.

TRIAL REGISTRATION

Current Controlled Trials ISRCTN12726986.

FUNDING

This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in ; Vol. 22, No. 64. See the NIHR Journals Library website for further project information. Funding was also recieved from the NIHR Collaboration for Leadership in Applied Health Research, Care Oxford at Oxford Health NHS Foundation Trust, NIHR Biomedical Research Centre, Oxford, and the NIHR Fellowship programme.

摘要

背景

踝关节扭伤是一种非常常见的损伤。尽管大多数患者可在数周内康复,但约有三分之一的患者会出现长期问题。

目的

制定并外部验证一种预测模型,以识别出急性踝关节扭伤后预后不良风险较高的人群。

设计

在临床试验队列数据集中开发预测模型,并在前瞻性队列研究中进行外部验证。

地点

英国的急诊部门。

参与者

急性踝关节扭伤(伤后 7 天内)的成年人。

样本量

开发数据集中有 584 名临床试验参与者,外部验证研究中招募了 682 名参与者。

预测指标

候选预测变量是根据临床数据集中的可用性、临床共识、表面有效性、文献系统回顾、数据质量和预测结果的合理性选择的。

主要结局指标

开发了两种代表不良结局的复合结局的预测模型。结局 1 是指受伤 9 个月后至少存在以下一种症状:持续疼痛、功能困难或缺乏信心。结局 2 包括与结局 1 相同的症状,但增加了受伤复发。外部数据集中不良结局的发生率低于开发数据集中,结局 1 为 7%,结局 2 为 16%。

分析

使用多重插补处理缺失数据。逻辑回归模型与多变量分数多项式一起用于选择变量,并根据名义 alpha 值为 0.157(选择该值是为了最小化过度拟合),基于预测结果最佳的连续预测变量进行识别。通过评估模型区分度(-统计量)和校准(灵活校准图)来评估预测准确性。

结果

(1)开发数据集中预测模型的性能——在 50 个插补数据集中,结局 1 模型的综合 -统计量为 0.74(95%置信区间 0.70 至 0.79),插补数据集中的模型校准良好。在 50 个插补数据集中,结局 2 模型的综合 -统计量为 0.70(95%置信区间 0.65 至 0.74),插补数据集中的模型校准良好。更新这些模型,即在 ED 收集的基线数据中添加一个在受伤后 4 周时的额外变量(踝关节承重时的疼痛),提高了鉴别能力(-统计量为 0.77,95%置信区间为 0.73 至 0.82,结局 1;0.75,95%置信区间为 0.71 至 0.80,结局 2)和两个模型的校准。(2)外部数据集中模型的性能——在 50 个插补数据集中,结局 1 模型的综合 -统计量为 0.73(95%置信区间为 0.66 至 0.79),校准图截距为-0.91(95%置信区间为-0.98 至 0.44),斜率为 1.13(95%置信区间为 0.76 至 1.50)。在 50 个插补数据集中,结局 2 模型的综合 -统计量为 0.63(95%置信区间为 0.58 至 0.69),校准图截距为-0.25(95%置信区间为-0.27 至 0.11),斜率为 1.03(95%置信区间为 0.65 至 1.42)。在 ED 中添加 4 周时的疼痛这一额外变量的更新模型在鉴别能力上优于基线模型,但校准效果没有改善。

结论

SPRAINED(急诊踝关节损伤临床预后规则的综合分析)预测模型表现良好,与不使用任何模型相比显示出了优势;因此,这些模型可能有助于 ED 环境中踝关节扭伤患者的临床决策。该模型使用的预测指标易于获取。

局限性

使用的数据来自一项随机对照试验,因此并非专门用于开发预测模型。然而,该数据集是可获得的最佳数据集,包括感兴趣的症状和临床事件的数据。

未来工作

可能需要进一步改进模型,包括重新校准或确定其他预测因素。应调查在临床实践中实施和使用任一模型的效果,包括临床医生的接受程度和使用情况以及患者的结局。

试验注册

当前对照试验 ISRCTN8255015。

资金

本项目由英国国家卫生研究院(NIHR)健康技术评估计划资助,将全文发表在;第 22 卷,第 64 期。有关该项目的更多信息,请访问 NIHR 期刊库网站。该项目还得到了 NIHR 应用健康研究领导力合作、牛津健康 NHS 基金会信托牛津地区的领导、NIHR 生物医学研究中心和牛津以及 NIHR 奖学金计划的资助。

相似文献

8

引用本文的文献

4
The missed chapter on midfoot: Chopart injuries.遗漏的关于中足的章节:Chopart损伤。
Radiol Med. 2024 Dec;129(12):1840-1848. doi: 10.1007/s11547-024-01905-9. Epub 2024 Nov 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验