Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.
Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.
Comput Med Imaging Graph. 2018 Jun;66:90-99. doi: 10.1016/j.compmedimag.2018.03.001. Epub 2018 Mar 16.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ∼10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results..
最近,三维全卷积网络(FCN)的发展使得对容积图像进行密集体素预测成为可能。在这项工作中,我们展示了一种基于手动标记的 CT 扫描训练的多类 3D FCN,可以实现具有竞争力的分割结果,同时避免了手工制作特征或训练特定类别的模型的需要。为此,我们提出了一种两阶段的粗到细的方法,首先使用 3D FCN 粗略地定义候选区域,然后将其作为输入提供给第二个 3D FCN。这将第二个 FCN 必须分类的体素数量减少到 ∼10%,并允许它更专注于器官和血管的更详细分割。我们利用包含 331 个临床 CT 图像的训练和验证集以及在另一家医院获得的完全未见过的数据集测试我们的模型,该数据集包括 150 个 CT 扫描,目标是三个解剖器官(肝、脾和胰腺)。在具有挑战性的器官(如胰腺)中,我们的级联方法将平均 Dice 评分从 68.5 提高到 82.2%,在该数据集上实现了最高的平均评分。我们在另一个包含 240 个 CT 扫描和 18 个类别的数据集上与 2D FCN 方法进行了比较,在小器官和血管方面取得了显著更高的性能。此外,我们还探索了对不同数据集微调我们模型的方法。我们的实验说明了基于当前 3D FCN 的医学图像语义分割的前景和稳健性,实现了最先进的结果。