Hoogi Assaf, Subramaniam Arjun, Veerapaneni Rishi, Rubin Daniel L
IEEE Trans Med Imaging. 2017 Mar;36(3):781-791. doi: 10.1109/TMI.2016.2628084. Epub 2016 Nov 11.
In this paper, we propose a generalization of the level set segmentation approach by supplying a novel method for adaptive estimation of active contour parameters. The presented segmentation method is fully automatic once the lesion has been detected. First, the location of the level set contour relative to the lesion is estimated using a convolutional neural network (CNN). The CNN has two convolutional layers for feature extraction, which lead into dense layers for classification. Second, the output CNN probabilities are then used to adaptively calculate the parameters of the active contour functional during the segmentation process. Finally, the adaptive window size surrounding each contour point is re-estimated by an iterative process that considers lesion size and spatial texture. We demonstrate the capabilities of our method on a dataset of 164 MRI and 112 CT images of liver lesions that includes low contrast and heterogeneous lesions as well as noisy images. To illustrate the strength of our method, we evaluated it against state of the art CNN-based and active contour techniques. For all cases, our method, as assessed by Dice similarity coefficients, performed significantly better than currently available methods. An average Dice improvement of 0.27 was found across the entire dataset over all comparisons. We also analyzed two challenging subsets of lesions and obtained a significant Dice improvement of 0.24 with our method (p <;0.001, Wilcoxon).
在本文中,我们通过提供一种用于自适应估计活动轮廓参数的新方法,提出了水平集分割方法的一种推广。一旦检测到病变,所提出的分割方法就是完全自动的。首先,使用卷积神经网络(CNN)估计水平集轮廓相对于病变的位置。该CNN有两个用于特征提取的卷积层,之后连接到用于分类的全连接层。其次,在分割过程中,输出的CNN概率随后用于自适应计算活动轮廓函数的参数。最后,通过一个考虑病变大小和空间纹理的迭代过程,重新估计围绕每个轮廓点的自适应窗口大小。我们在一个包含164幅肝脏病变的MRI图像和112幅CT图像的数据集上展示了我们方法的能力,该数据集包括低对比度和异质性病变以及噪声图像。为了说明我们方法的优势,我们将其与基于CNN的现有技术和活动轮廓技术进行了评估。对于所有情况,通过Dice相似系数评估,我们的方法比现有方法表现得显著更好。在所有比较中,整个数据集上我们的方法平均Dice改进为0.27。我们还分析了两个具有挑战性的病变子集,我们的方法在这些子集中获得了显著的Dice改进,改进值为0.24(p<0.001,Wilcoxon检验)。