Suppr超能文献

通过缓释植入式微针贴片疫苗接种增强体液免疫。

Enhancing humoral immunity via sustained-release implantable microneedle patch vaccination.

机构信息

Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.

出版信息

Proc Natl Acad Sci U S A. 2019 Aug 13;116(33):16473-16478. doi: 10.1073/pnas.1902179116. Epub 2019 Jul 29.

Abstract

Sustained exposure of lymphoid tissues to vaccine antigens promotes humoral immunity, but traditional bolus immunizations lead to rapid antigen clearance. We describe a technology to tailor vaccine kinetics in a needle-free platform translatable to human immunization. Solid pyramidal microneedle (MN) arrays were fabricated with silk fibroin protein tips encapsulating a stabilized HIV envelope trimer immunogen and adjuvant, supported on a dissolving polymer base. Upon brief skin application, vaccine-loaded silk tips are implanted in the epidermis/upper dermis where they release vaccine over a time period determined by the crystallinity of the silk matrix. Following MN immunization in mice, Env trimer was released over 2 wk in the skin, correlating with increased germinal center (GC) B cell responses, a ∼1,300-fold increase in serum IgG titers and a 16-fold increase in bone marrow (BM) plasma cells compared with bolus immunization. Thus, implantable MNs provide a practical means to substantially enhance humoral immunity to subunit vaccines.

摘要

淋巴组织持续暴露于疫苗抗原可促进体液免疫,但传统的大剂量免疫接种会导致抗原迅速清除。我们描述了一种技术,可在无针平台上定制疫苗动力学,该技术可转化为人体免疫。采用丝素蛋白针尖制成的实心金字塔形微针 (MN) 阵列,针尖内封装稳定的 HIV 包膜三聚体免疫原和佐剂,支撑在可溶解的聚合物基底上。在皮肤短暂应用后,负载疫苗的丝质尖端被植入表皮/真皮上层,在丝质基质的结晶度决定的时间内释放疫苗。在小鼠进行 MN 免疫接种后,Env 三聚体在皮肤中释放超过 2 周,与生发中心 (GC) B 细胞反应增加、血清 IgG 滴度增加约 1300 倍以及骨髓 (BM) 浆细胞增加 16 倍相关与大剂量免疫接种相比。因此,可植入的 MN 为增强亚单位疫苗的体液免疫提供了一种实用手段。

相似文献

1
Enhancing humoral immunity via sustained-release implantable microneedle patch vaccination.
Proc Natl Acad Sci U S A. 2019 Aug 13;116(33):16473-16478. doi: 10.1073/pnas.1902179116. Epub 2019 Jul 29.
4
Smart vaccine delivery based on microneedle arrays decorated with ultra-pH-responsive copolymers for cancer immunotherapy.
Biomaterials. 2018 Dec;185:13-24. doi: 10.1016/j.biomaterials.2018.09.008. Epub 2018 Sep 8.
5
Enhancing influenza vaccine immunogenicity and efficacy through infection mimicry using silk microneedles.
Vaccine. 2021 Sep 7;39(38):5410-5421. doi: 10.1016/j.vaccine.2021.07.064. Epub 2021 Aug 12.
8
Development of PLGA nanoparticle loaded dissolving microneedles and comparison with hollow microneedles in intradermal vaccine delivery.
Eur J Pharm Biopharm. 2018 Aug;129:111-121. doi: 10.1016/j.ejpb.2018.05.031. Epub 2018 May 24.
9
Sustained antigens delivery using composite microneedles for effective epicutaneous immunotherapy.
Drug Deliv Transl Res. 2023 Jun;13(6):1828-1841. doi: 10.1007/s13346-023-01298-8. Epub 2023 Mar 24.
10
Separable nanocomposite hydrogel microneedles for intradermal and sustained delivery of antigens to enhance adaptive immune responses.
Acta Biomater. 2024 Sep 1;185:203-214. doi: 10.1016/j.actbio.2024.07.031. Epub 2024 Jul 23.

引用本文的文献

1
Sustained exposure to multivalent antigen-decorated nanoparticles generates broad anti-coronavirus responses.
Matter. 2025 Apr 2;8(4). doi: 10.1016/j.matt.2025.102006. Epub 2025 Feb 25.
2
Engineering microneedles for biosensing and drug delivery.
Bioact Mater. 2025 Jun 1;52:36-59. doi: 10.1016/j.bioactmat.2025.05.027. eCollection 2025 Oct.
4
Polymeric microneedle advancements in macromolecule drug delivery: current trends, challenges, and future perspectives.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Apr 17. doi: 10.1007/s00210-025-04117-8.
5
Immunologically effective biomaterials-enhanced vaccines against infection of pathogenic microorganisms.
Biosaf Health. 2022 Dec 2;5(1):45-61. doi: 10.1016/j.bsheal.2022.11.002. eCollection 2023 Feb.
6
Compliant immune response of silk-based biomaterials broadens application in wound treatment.
Front Pharmacol. 2025 Feb 12;16:1548837. doi: 10.3389/fphar.2025.1548837. eCollection 2025.
7
Beyond the Needle: Innovative Microneedle-Based Transdermal Vaccination.
Medicines (Basel). 2025 Feb 7;12(1):4. doi: 10.3390/medicines12010004.
10
Modulating Adjuvant Release Kinetics From Scaffold Vaccines to Tune Adaptive Immune Responses.
Adv Healthc Mater. 2025 Feb;14(5):e2304574. doi: 10.1002/adhm.202304574. Epub 2024 May 21.

本文引用的文献

1
Vaccine-Induced Protection from Homologous Tier 2 SHIV Challenge in Nonhuman Primates Depends on Serum-Neutralizing Antibody Titers.
Immunity. 2019 Jan 15;50(1):241-252.e6. doi: 10.1016/j.immuni.2018.11.011. Epub 2018 Dec 11.
6
Engineering Microneedle Patches for Vaccination and Drug Delivery to Skin.
Annu Rev Chem Biomol Eng. 2017 Jun 7;8:177-200. doi: 10.1146/annurev-chembioeng-060816-101514. Epub 2017 Mar 24.
7
Developing an HIV vaccine.
Science. 2017 Mar 17;355(6330):1129-1130. doi: 10.1126/science.aan0662. Epub 2017 Mar 16.
8
Tolerability, usability and acceptability of dissolving microneedle patch administration in human subjects.
Biomaterials. 2017 Jun;128:1-7. doi: 10.1016/j.biomaterials.2017.02.040. Epub 2017 Mar 2.
9
The quest for an antibody-based HIV vaccine.
Immunol Rev. 2017 Jan;275(1):5-10. doi: 10.1111/imr.12517.
10
Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination.
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):E6639-E6648. doi: 10.1073/pnas.1606050113. Epub 2016 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验