Mossman Maren E, Hou Junpeng, Luo Xi-Wang, Zhang Chuanwei, Engels Peter
Department of Physics and Astronomy, Washington State University, Pullman, WA, 99164, USA.
Department of Physics, The University of Texas at Dallas, Dallas, TX, 75080, USA.
Nat Commun. 2019 Jul 29;10(1):3381. doi: 10.1038/s41467-019-11210-z.
Controlling magnetism through non-magnetic means is highly desirable for future electronic devices, as such means typically have ultra-low power requirements and can provide coherent control. In recent years, great experimental progress has been made in the field of electrical manipulation of magnetism in numerous material systems. These studies generally do not consider the directionality of the applied non-magnetic potentials and/or magnetism switching. Here, we theoretically conceive and experimentally demonstrate a non-magnetic one-way spin switch device using a spin-orbit coupled Bose-Einstein condensate subjected to a moving spin-independent repulsive dipole potential. The physical foundation of this unidirectional device is based on the breakdown of Galilean invariance in the presence of spin-orbit coupling. Such a one-way spin switch opens an avenue for designing quantum devices with unique functionalities and may facilitate further experimental investigations of other one-way spintronic and atomtronic devices.
通过非磁性手段控制磁性对于未来的电子设备非常重要,因为此类手段通常具有超低功耗要求,并且能够提供相干控制。近年来,在众多材料系统的磁性电操纵领域已经取得了巨大的实验进展。这些研究通常没有考虑所施加的非磁性势的方向性和/或磁性开关。在此,我们从理论上构思并通过实验证明了一种非磁性单向自旋开关器件,该器件使用了一个受移动的与自旋无关的排斥偶极势作用的自旋轨道耦合玻色 - 爱因斯坦凝聚体。这种单向器件的物理基础基于在存在自旋轨道耦合时伽利略不变性的破坏。这样一种单向自旋开关为设计具有独特功能的量子器件开辟了一条途径,并且可能有助于对其他单向自旋电子学和原子电子学器件进行进一步的实验研究。