JILA, NIST and University of Colorado, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA.
Nature. 2017 Feb 2;542(7639):66-70. doi: 10.1038/nature20811. Epub 2016 Dec 21.
Engineered spin-orbit coupling (SOC) in cold-atom systems can enable the study of new synthetic materials and complex condensed matter phenomena. However, spontaneous emission in alkali-atom spin-orbit-coupled systems is hindered by heating, limiting the observation of many-body effects and motivating research into potential alternatives. Here we demonstrate that spin-orbit-coupled fermions can be engineered to occur naturally in a one-dimensional optical lattice clock. In contrast to previous SOC experiments, here the SOC is both generated and probed using a direct ultra-narrow optical clock transition between two electronic orbital states in Sr atoms. We use clock spectroscopy to prepare lattice band populations, internal electronic states and quasi-momenta, and to produce spin-orbit-coupled dynamics. The exceptionally long lifetime of the excited clock state (160 seconds) eliminates decoherence and atom loss from spontaneous emission at all relevant experimental timescales, allowing subsequent momentum- and spin-resolved in situ probing of the SOC band structure and eigenstates. We use these capabilities to study Bloch oscillations, spin-momentum locking and Van Hove singularities in the transition density of states. Our results lay the groundwork for using fermionic optical lattice clocks to probe new phases of matter.
在冷原子体系中,通过工程设计实现自旋轨道耦合(SOC)可以使人们能够研究新型人工合成材料和复杂凝聚态现象。然而,碱金属原子自旋轨道耦合体系中的自发发射会受到加热的阻碍,这限制了对许多体效应的观察,并促使人们研究潜在的替代方案。在这里,我们证明了自旋轨道耦合费米子可以在一维光晶格钟中自然发生。与以前的 SOC 实验不同,这里的 SOC 是通过 Sr 原子中两个电子轨道态之间的直接超窄光学时钟跃迁产生和探测的。我们使用时钟光谱学来制备晶格能带,内部电子态和准动量,并产生自旋轨道耦合动力学。激发态时钟的超长寿命(160 秒)消除了自发发射的退相干和原子损失,从而在所有相关的实验时间尺度上都可以对 SOC 能带结构和本征态进行后续的动量和自旋分辨原位探测。我们利用这些功能研究了布洛赫振荡,自旋动量锁定和过渡态密度中的范霍夫奇点。我们的研究结果为使用费米子光学晶格钟来探测物质的新相奠定了基础。