Stefanoni Matteo, Angst Ueli M, Elsener Bernhard
Institute for Building Materials, ETH Zurich, Zurich, Switzerland.
Department of Chemical and Geological Science, University of Cagliari, Monserrato, Italy.
Nat Mater. 2019 Sep;18(9):942-947. doi: 10.1038/s41563-019-0439-8. Epub 2019 Jul 29.
Metals embedded in porous media interact electrochemically with the liquid phase contained in the pores. A widespread form of this, adversely affecting the integrity of engineered structures, is corrosion of steel in porous media or in natural environments. While it is well documented that the rate of this electrochemical dissolution process can vary over several orders of magnitude, understanding the underlying mechanisms remains a critical challenge hampering the development of reliable predictive models. Here we study the electrochemical dissolution kinetics of steel in meso-to-macro-porous media, using cement-based materials, wood and artificial soil as model systems. Our results reveal the dual role of the pore structure (that is, the influence on the electrochemical behaviour through transport limitations and an area effect, which is ultimately due to microscopic inhomogeneity of the metal/porous material interface). We rationalize the observations with the theory of capillary condensation and propose a material-independent model to predict the corrosion rate.
嵌入多孔介质中的金属与孔隙中所含的液相发生电化学相互作用。这种情况的一种普遍形式是多孔介质或自然环境中钢的腐蚀,这对工程结构的完整性产生不利影响。虽然有充分的文献记载,这种电化学溶解过程的速率可能会在几个数量级范围内变化,但了解其潜在机制仍然是阻碍可靠预测模型发展的关键挑战。在这里,我们使用水泥基材料、木材和人造土壤作为模型系统,研究中观到宏观多孔介质中钢的电化学溶解动力学。我们的结果揭示了孔隙结构的双重作用(即通过传输限制和面积效应影响电化学行为,这最终归因于金属/多孔材料界面的微观不均匀性)。我们用毛细凝聚理论对这些观察结果进行了合理化解释,并提出了一个与材料无关的模型来预测腐蚀速率。