Polytechnique Montréal, Institute of Biomedical Engineering, Montreal, QC, Canada.
Centre Hospitalier Universitaire Sainte-Justine de Montréal Research Center, Montreal, QC, Canada.
Int J Comput Assist Radiol Surg. 2019 Sep;14(9):1565-1575. doi: 10.1007/s11548-019-02041-w. Epub 2019 Jul 29.
Anterior vertebral body growth modulation (AVBGM) is a minimally invasive surgical technique that gradually corrects spine deformities while preserving lumbar motion. However, identifying suitable patients for surgery is based on clinical judgment and surgical experience. This process would be facilitated by the identification of patients responding to AVBGM prior to surgery using data-driven models trained on previous instrumented cases.
We introduce a statistical framework for predicting the surgical outcomes following AVBGM in adolescents with idiopathic scoliosis. A discriminant manifold is first constructed to maximize the separation between responsive and non-responsive groups of patients treated with AVBGM for scoliosis. The model then uses subject-specific correction trajectories based on articulated transformations in order to map spine correction profiles to a group-average piecewise-geodesic path. Spine correction trajectories are described in a piecewise-geodesic fashion to account for varying times at follow-up examinations, regressing the curve via a quadratic optimization process. To predict the evolution of correction, a baseline reconstruction is projected onto the manifold, from which a spatiotemporal regression model is built from parallel transport curves inferred from neighboring exemplars.
The model was trained on 438 reconstructions and tested on 56 subjects using 3D spine reconstructions from follow-up examinations, with the probabilistic framework yielding accurate results with differences of [Formula: see text] in main curve angulation and a classification rate of 83.2%, and generating models similar to biomechanical simulations.
The proposed method achieved a higher prediction accuracy and improved the modeling of spatiotemporal morphological changes in surgical patients treated with AVBGM.
椎体前方生长调控术(AVBGM)是一种微创外科技术,它可以在保留腰椎运动的同时逐渐矫正脊柱畸形。然而,确定适合手术的患者是基于临床判断和手术经验。如果能在手术前使用基于既往有创病例训练的数据驱动模型识别出对 AVBGM 有反应的患者,这一过程将会得到简化。
我们引入了一种统计框架,用于预测青少年特发性脊柱侧凸患者接受 AVBGM 治疗后的手术结果。首先构建判别流形,以最大化接受 AVBGM 治疗的脊柱侧凸患者的反应组和非反应组之间的分离度。然后,该模型使用基于关节变换的患者特定矫正轨迹,将脊柱矫正曲线映射到一个组平均分段测地线路径。使用分段测地线来描述脊柱矫正轨迹,以考虑随访检查时的不同时间,通过二次优化过程回归曲线。为了预测矫正的演变,通过从相邻样本中推断的平行传输曲线,将基线重建投影到流形上,从该流形构建时空回归模型。
该模型在 438 次重建上进行了训练,并在 56 名患者上进行了测试,使用随访检查的 3D 脊柱重建,概率框架产生了准确的结果,主要曲线角度的差异为[Formula: see text],分类率为 83.2%,并生成了与生物力学模拟相似的模型。
所提出的方法提高了预测精度,并改善了接受 AVBGM 治疗的手术患者的时空形态变化建模。