Suppr超能文献

利用 CRISPR-Cas9 系统建立成年海胆的基因敲除模型。

Establishment of knockout adult sea urchins by using a CRISPR-Cas9 system.

机构信息

Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan.

Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.

出版信息

Dev Growth Differ. 2019 Aug;61(6):378-388. doi: 10.1111/dgd.12624. Epub 2019 Jul 29.

Abstract

Sea urchins are used as a model organism for research on developmental biology and gene regulatory networks during early development. Gene knockdown by microinjection of morpholino antisense oligonucleotide (MASO) has been used to analyze gene function in early sea urchin embryos. However, as the effect of MASO is not long lasting, it is impossible to perturb genes expressed during late development by MASO. Recent advances in genome editing technologies have enabled gene modification in various organisms. We previously reported genome editing in the sea urchin Hemicentrotus pulcherrimus using zinc-finger nuclease (ZFN) and transcription activator-like effector nuclease (TALEN); however, the efficiencies of these technologies were not satisfactory. Here, we applied clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated nuclease 9 (Cas9) technology to knock out the Pks1 gene in H. pulcherrimus. When sgRNAs targeting Pks1, which is required for the biosynthesis of larval pigment, were microinjected into fertilized eggs with SpCas9 mRNA, high-efficiency mutagenesis was achieved within 24 hr post fertilization and SpCas9/sgRNA-injected pluteus larvae had an albino phenotype. One of the sgRNAs yielded 100% mutagenesis efficiency, and no off-target effect was detected. In addition, the albino phenotype was maintained in juvenile sea urchins after metamorphosis, and the knockout sea urchins survived for at least one year and grew to albino adult sea urchins. These findings suggest that knockout adult sea urchins were successfully established and the CRISPR-Cas9 system is a feasible method for analyzing gene functions from late developmental to adult stage.

摘要

海胆被用作研究早期发育过程中的发育生物学和基因调控网络的模式生物。通过注射 吗啉代反义寡核苷酸(MASO)的方法进行基因敲低,已经被用于分析早期海胆胚胎中的基因功能。然而,由于 MASO 的作用不是持久的,因此无法通过 MASO 干扰在晚期发育过程中表达的基因。近年来,基因组编辑技术的进步使得在各种生物体中进行基因修饰成为可能。我们之前曾报道过使用锌指核酸酶(ZFN)和转录激活因子样效应物核酸酶(TALEN)在海胆 Hemicentrotus pulcherrimus 中进行基因组编辑;然而,这些技术的效率并不令人满意。在这里,我们应用成簇的规律间隔的短回文重复序列(CRISPR)-CRISPR 相关核酸酶 9(Cas9)技术敲除了 H. pulcherrimus 中幼虫色素生物合成所必需的 Pks1 基因。当针对 Pks1 的 sgRNA(SpCas9 mRNA 微注射到受精卵中)时,在受精后 24 小时内实现了高效的诱变,SpCas9/sgRNA 注射的幼体出现白化表型。其中一种 sgRNA 的诱变效率达到了 100%,且未检测到脱靶效应。此外,在变态后的幼体中,白化表型得以维持,并且经过突变的海胆至少存活了一年,并生长为白化成年海胆。这些发现表明,成功建立了突变的成年海胆,并且 CRISPR-Cas9 系统是一种从晚期发育到成年阶段分析基因功能的可行方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验