Suppr超能文献

利用被 cage 的 morpholino 在海胆中进行条件性基因敲低。

Conditional gene knockdowns in sea urchins using caged morpholinos.

机构信息

Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.

Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.

出版信息

Dev Biol. 2021 Jul;475:21-29. doi: 10.1016/j.ydbio.2021.02.014. Epub 2021 Mar 5.

Abstract

Echinoderms are important experimental models for analyzing embryonic development, but a lack of spatial and temporal control over gene perturbations has hindered developmental studies using these animals. Morpholino antisense oligonucleotides (MOs) have been used successfully by the echinoderm research community for almost two decades, and MOs remain the most widely used tool for acute gene knockdowns in these organisms. Echinoderm embryos develop externally and are optically transparent, making them ideally-suited to many light-based approaches for analyzing and manipulating development. Studies using zebrafish embryos have demonstrated the effectiveness of photoactivatable (caged) MOs for conditional gene knockdowns. Here we show that caged MOs, synthesized using nucleobase-caged monomers, provide light-regulated control over gene expression in sea urchin embryos. Our work provides the first robust approach for conditional gene silencing in this prominent model system.

摘要

棘皮动物是分析胚胎发育的重要实验模型,但由于缺乏对基因干扰的时空控制,这些动物的发育研究受到了阻碍。近二十年来,反义寡核苷酸(MOs)在棘皮动物研究领域得到了成功应用,并且 MOs 仍然是这些生物中急性基因敲低最广泛使用的工具。棘皮动物的胚胎是体外发育的,并且是光学透明的,这使得它们非常适合使用许多基于光的方法来分析和操作发育。使用斑马鱼胚胎的研究表明,光激活(笼状)MOs 可用于条件性基因敲低。在这里,我们展示了使用碱基笼状单体合成的笼状 MOs 可提供对海胆胚胎中基因表达的光调控控制。我们的工作为这个重要的模式系统提供了第一个稳健的条件性基因沉默方法。

相似文献

1
Conditional gene knockdowns in sea urchins using caged morpholinos.
Dev Biol. 2021 Jul;475:21-29. doi: 10.1016/j.ydbio.2021.02.014. Epub 2021 Mar 5.
2
Inducible Inhibition of Gene Function with Photomorpholinos.
Methods Mol Biol. 2017;1565:51-57. doi: 10.1007/978-1-4939-6817-6_5.
4
Using Morpholinos to Probe Gene Networks in Sea Urchin.
Methods Mol Biol. 2017;1565:87-104. doi: 10.1007/978-1-4939-6817-6_8.
5
Perturbations to the hedgehog pathway in sea urchin embryos.
Methods Mol Biol. 2014;1128:211-21. doi: 10.1007/978-1-62703-974-1_14.
6
An optimized Tet-On system for conditional control of gene expression in sea urchins.
Development. 2023 Jan 1;150(1). doi: 10.1242/dev.201373. Epub 2023 Jan 6.
7
Combinatorial control of gene function with wavelength-selective caged morpholinos.
Methods Enzymol. 2019;624:69-88. doi: 10.1016/bs.mie.2019.04.007. Epub 2019 Apr 25.
9
Nitroreductase-activatable morpholino oligonucleotides for in vivo gene silencing.
ACS Chem Biol. 2014 Sep 19;9(9):1985-90. doi: 10.1021/cb500429u. Epub 2014 Jul 28.
10
Bicyclic Caged Morpholino Oligonucleotides for Optical Gene Silencing.
Chembiochem. 2022 Nov 4;23(21):e202200374. doi: 10.1002/cbic.202200374. Epub 2022 Oct 6.

引用本文的文献

3
Direct Activation of Nucleobases with Small Molecules for the Conditional Control of Antisense Function.
Angew Chem Int Ed Engl. 2024 Apr 22;63(17):e202318773. doi: 10.1002/anie.202318773. Epub 2024 Mar 15.
5
Antisense Oligonucleotide Activation via Enzymatic Antibiotic Resistance Mechanism.
ACS Chem Biol. 2023 Oct 20;18(10):2176-2182. doi: 10.1021/acschembio.3c00027. Epub 2023 Jun 16.
6
An optimized Tet-On system for conditional control of gene expression in sea urchins.
Development. 2023 Jan 1;150(1). doi: 10.1242/dev.201373. Epub 2023 Jan 6.
7
Light-Activated Translation of Different mRNAs in Cells via Wavelength-Dependent Photouncaging.
Angew Chem Int Ed Engl. 2023 Jan 26;62(5):e202209975. doi: 10.1002/anie.202209975. Epub 2022 Dec 20.
8
Enzymatic Modification of the 5' Cap with Photocleavable ONB-Derivatives Using GlaTgs V34A.
Chembiochem. 2023 Jan 17;24(2):e202200522. doi: 10.1002/cbic.202200522. Epub 2022 Dec 8.
9
Optical Control of MicroRNA Function in Zebrafish Embryos.
J Am Chem Soc. 2022 Sep 21;144(37):16819-16826. doi: 10.1021/jacs.2c04479. Epub 2022 Sep 8.
10
Bicyclic Caged Morpholino Oligonucleotides for Optical Gene Silencing.
Chembiochem. 2022 Nov 4;23(21):e202200374. doi: 10.1002/cbic.202200374. Epub 2022 Oct 6.

本文引用的文献

1
Very fast CRISPR on demand.
Science. 2020 Jun 12;368(6496):1265-1269. doi: 10.1126/science.aay8204.
2
Establishment of homozygous knock-out sea urchins.
Curr Biol. 2020 May 18;30(10):R427-R429. doi: 10.1016/j.cub.2020.03.057.
3
Spatiotemporal Control of CRISPR/Cas9 Function in Cells and Zebrafish using Light-Activated Guide RNA.
Angew Chem Int Ed Engl. 2020 Jun 2;59(23):8998-9003. doi: 10.1002/anie.201914575. Epub 2020 Apr 6.
4
Optical Control of Small Molecule-Induced Protein Degradation.
J Am Chem Soc. 2020 Feb 5;142(5):2193-2197. doi: 10.1021/jacs.9b12718. Epub 2020 Jan 23.
5
The evolution of a new cell type was associated with competition for a signaling ligand.
PLoS Biol. 2019 Sep 18;17(9):e3000460. doi: 10.1371/journal.pbio.3000460. eCollection 2019 Sep.
6
Drug Inducible CRISPR/Cas Systems.
Comput Struct Biotechnol J. 2019 Jul 30;17:1171-1177. doi: 10.1016/j.csbj.2019.07.015. eCollection 2019.
7
Gene redundancy and gene compensation: An updated view.
J Genet Genomics. 2019 Jul 20;46(7):329-333. doi: 10.1016/j.jgg.2019.07.001. Epub 2019 Jul 19.
8
Combinatorial control of gene function with wavelength-selective caged morpholinos.
Methods Enzymol. 2019;624:69-88. doi: 10.1016/bs.mie.2019.04.007. Epub 2019 Apr 25.
9
Establishment of knockout adult sea urchins by using a CRISPR-Cas9 system.
Dev Growth Differ. 2019 Aug;61(6):378-388. doi: 10.1111/dgd.12624. Epub 2019 Jul 29.
10
Single cell RNA-seq in the sea urchin embryo show marked cell-type specificity in the Delta/Notch pathway.
Mol Reprod Dev. 2019 Aug;86(8):931-934. doi: 10.1002/mrd.23181. Epub 2019 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验