Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS13 NY, UK.
Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, BS8 1FD, UK.
Adv Healthc Mater. 2019 Sep;8(17):e1900698. doi: 10.1002/adhm.201900698. Epub 2019 Jul 30.
3D scaffolds provide cells with a spatial environment that more closely resembles that of in vivo tissue, when compared to 2D culture on a plastic substrate. However, many scaffolding materials commonly used in tissue engineering tend to exhibit anisotropic morphologies that exhibit a narrow range of fiber diameters and pore sizes, which do not recapitulate extracellular matrices. In this study, a fibrin hydrogel is formed within the interstitial spaces of an electrospun poly(glycolic) acid (PGA) monolith to generate a composite, bimodal scaffold for the coculture of kidney glomerular cell lines. This new scaffold exhibits multiple fiber morphologies, containing both PGA microfibers (14.5 ± 2 µm) and fibrin gel nanofibers (0.14 ± 0.09 µm), which increase the compressive Young's modulus beyond that of either of the constituents. The composite structure provides an enhanced 3D environment that increases proliferation and adhesion of immortalized human podocytes and glomerular endothelial cells. Moreover, the micro/nanoscale fibrous morphology promotes motility and reorganization of the glomerular cells into glomerulus-like structures, resulting in the deposition of organized collagen IV; the primary component of the glomerular basement membrane (GBM).
3D 支架为细胞提供了一个更接近体内组织的空间环境,与在塑料基质上进行的 2D 培养相比。然而,许多常用于组织工程的支架材料往往表现出各向异性的形态,具有较窄的纤维直径和孔径范围,无法再现细胞外基质。在这项研究中,纤维蛋白水凝胶在静电纺丝聚(乙醇酸)(PGA)单体的空隙内形成,以产生用于肾脏肾小球细胞系共培养的复合双模态支架。这种新的支架具有多种纤维形态,包含 PGA 微纤维(14.5 ± 2 µm)和纤维蛋白凝胶纳米纤维(0.14 ± 0.09 µm),其压缩杨氏模量超过了任何一种组成成分。复合结构提供了增强的 3D 环境,促进了永生化人足细胞和肾小球内皮细胞的增殖和黏附。此外,微/纳米纤维形态促进了肾小球细胞向肾小球样结构的运动和重组,导致有组织的胶原蛋白 IV 的沉积;这是肾小球基底膜(GBM)的主要成分。