Suppr超能文献

对弹射型雀尾螳螂虾攻击中功率放大的电生理研究。

An Electrophysiological Investigation of Power-Amplification in the Ballistic Mantis Shrimp Punch.

作者信息

Pollak Daniel J, Feller Kathryn D, Serbe Étienne, Mircic Stanislav, Gage Gregory J

机构信息

Backyard Brains, Ann Arbor, MI 48104.

University of Massachusetts Amherst, Amherst, MA 01003.

出版信息

J Undergrad Neurosci Educ. 2019 Jun 30;17(2):T12-T18. eCollection 2019 Spring.

Abstract

Mantis shrimp are aggressive, burrowing crustaceans that hunt using one the fastest movements in the natural world. These stomatopods can crack the calcified shells of prey or spear down unsuspecting fish with lighting speed. Their strike makes use of power-amplification mechanisms to move their limbs much faster than is possible by muscles alone. Other arthropods such as crickets and grasshoppers also use power-amplified kicks that allow these animals to rapidly jump away from predator threats. Here we present a template laboratory exercise for studying the electrophysiology of power-amplified limb movement in arthropods, with a specific focus on mantis shrimp strikes. The exercise is designed in such a way that it can be applied to other species that perform power-amplified limb movements (e.g., house crickets, ) and species that do not (e.g., cockroaches, ). Students learn to handle the animals, make and implant electromyogram (EMG) probes, and finally perform experiments. This integrative approach introduces the concept of power-amplified neuromuscular control; allows students to develop scientific methods, and conveys high-level insights into behavior, and convergent evolution, the process by which different species evolve similar traits. Our power-amplification laboratory exercise involves a non-terminal preparation which allows electrophysiological recordings across multiple days from arthropods using a low-cost EMG amplifier. Students learn the principles of electrophysiology by fabricating their own electrode system and performing implant surgeries. Students then present behaviorally-relevant stimuli that generate attack strikes in the animals during the electrophysiology experiments to get insight into the underlying mechanisms of power amplification. Analyses of the EMG data (spike train burst duration, firing rate, and spike amplitude) allow students to compare mantis shrimp with other power-amplifying species, as well as a non-power-amplifying one. The major learning goal of this exercise is to empower students by providing an experience to develop their own setup to examine a complex biological principle. By contrasting power-amplifiers with non-power-amplifiers, these analyses highlight the peculiarity of power amplification at multiple levels of analysis, from behavior to physiology. Our comparative design requires students to consider the behavioral function of the movement in different species alongside the neuromuscular underpinnings of each movement. This laboratory exercise allows students to develop methodology, problem-solving and inquisitive skills crucial for pursuing science.

摘要

雀尾螳螂虾是具有攻击性的穴居甲壳类动物,它们利用自然界中最快的动作之一进行捕猎。这些口足类动物能够以闪电般的速度敲碎猎物的钙化外壳或刺向毫无防备的鱼类。它们的攻击利用了功率放大机制,使肢体的移动速度比仅靠肌肉所能达到的速度快得多。其他节肢动物,如蟋蟀和蚱蜢,也会利用功率放大的踢腿动作迅速逃离捕食者的威胁。在这里,我们展示了一个模板式的实验室练习,用于研究节肢动物中功率放大肢体运动的电生理学,特别关注雀尾螳螂虾的攻击。该练习的设计方式使其可应用于其他进行功率放大肢体运动的物种(如家蟋蟀)以及不进行此类运动的物种(如蟑螂)。学生们学习如何处理动物、制作并植入肌电图(EMG)探针,最后进行实验。这种综合方法引入了功率放大神经肌肉控制的概念;让学生们培养科学方法,并传达对行为以及趋同进化(即不同物种进化出相似特征的过程)的高层次见解。我们的功率放大实验室练习涉及一种非终端制备方法,该方法允许使用低成本的EMG放大器在数天内对节肢动物进行电生理记录。学生们通过制作自己的电极系统并进行植入手术来学习电生理学原理。然后,学生们在电生理实验期间向动物呈现与行为相关的刺激,引发攻击动作,以深入了解功率放大的潜在机制。对EMG数据(尖峰序列爆发持续时间、放电率和尖峰幅度)的分析使学生能够将雀尾螳螂虾与其他功率放大物种以及非功率放大物种进行比较。这个练习的主要学习目标是通过提供一种让学生自行搭建装置来研究复杂生物学原理的体验,增强学生的能力。通过将功率放大器与非功率放大器进行对比,这些分析在从行为到生理的多个分析层面突出了功率放大的独特性。我们的比较设计要求学生在考虑每种运动的神经肌肉基础的同时,思考不同物种中运动的行为功能。这个实验室练习让学生们培养对从事科学研究至关重要的方法、解决问题和探究能力。

相似文献

1
An Electrophysiological Investigation of Power-Amplification in the Ballistic Mantis Shrimp Punch.
J Undergrad Neurosci Educ. 2019 Jun 30;17(2):T12-T18. eCollection 2019 Spring.
2
Feed-forward motor control of ultrafast, ballistic movements.
J Exp Biol. 2016 Feb;219(Pt 3):319-33. doi: 10.1242/jeb.130518. Epub 2015 Dec 7.
3
Repeated Evolution of Power-Amplified Predatory Strikes in Trap-Jaw Spiders.
Curr Biol. 2016 Apr 25;26(8):1057-61. doi: 10.1016/j.cub.2016.02.029. Epub 2016 Apr 7.
4
Scaling and development of elastic mechanisms: the tiny strikes of larval mantis shrimp.
J Exp Biol. 2021 Apr 15;224(8). doi: 10.1242/jeb.235465. Epub 2021 Apr 29.
5
From Telson to Attack in Mantis Shrimp: Bridging Biomechanics and Behavior in Crustacean Contests.
Integr Comp Biol. 2021 Sep 8;61(2):643-654. doi: 10.1093/icb/icab064.
6
Modularity and scaling in fast movements: power amplification in mantis shrimp.
Evolution. 2011 Feb;65(2):443-61. doi: 10.1111/j.1558-5646.2010.01133.x. Epub 2010 Oct 7.
7
Smashing mantis shrimp strategically impact shells.
J Exp Biol. 2018 Jun 14;221(Pt 11):jeb176099. doi: 10.1242/jeb.176099.
8
Strike mechanics of an ambush predator: the spearing mantis shrimp.
J Exp Biol. 2012 Dec 15;215(Pt 24):4374-84. doi: 10.1242/jeb.075317.
9
Medium compensation in a spring-actuated system.
J Exp Biol. 2020 Feb 25;223(Pt 4):jeb208678. doi: 10.1242/jeb.208678.
10
A physical model of mantis shrimp for exploring the dynamics of ultrafast systems.
Proc Natl Acad Sci U S A. 2021 Aug 17;118(33). doi: 10.1073/pnas.2026833118.

引用本文的文献

1
Reducing education inequalities through cloud-enabled live-cell biotechnology.
Trends Biotechnol. 2025 Jan;43(1):43-60. doi: 10.1016/j.tibtech.2024.07.015. Epub 2024 Aug 28.
2
Automatic Monitoring of Relevant Behaviors for Crustacean Production in Aquaculture: A Review.
Animals (Basel). 2021 Sep 16;11(9):2709. doi: 10.3390/ani11092709.
3
Innovation in Neuroscience Education for Diverse Student Populations.
J Undergrad Neurosci Educ. 2019 Jun 30;17(2):E13-E14. eCollection 2019 Spring.

本文引用的文献

1
The Case for Neuroscience Research in the Classroom.
Neuron. 2019 Jun 5;102(5):914-917. doi: 10.1016/j.neuron.2019.04.007.
2
Reducing the Cost of Electrophysiology in the Teaching Laboratory.
J Undergrad Neurosci Educ. 2018 Sep 15;16(3):A277-A281. eCollection 2018 Summer.
3
Using Optogenetics to Understand Neuronal Mechanisms Underlying Behavior in .
J Undergrad Neurosci Educ. 2018 Jun 15;16(2):A152-A158. eCollection 2018 Spring.
4
Smashing mantis shrimp strategically impact shells.
J Exp Biol. 2018 Jun 14;221(Pt 11):jeb176099. doi: 10.1242/jeb.176099.
5
The principles of cascading power limits in small, fast biological and engineered systems.
Science. 2018 Apr 27;360(6387). doi: 10.1126/science.aao1082.
7
Breadboard Amplifier: Building and Using Simple Electrophysiology Equipment.
J Undergrad Neurosci Educ. 2016 Apr 15;14(2):A124-31. eCollection 2016 Spring.
8
Specialized morphology corresponds to a generalist diet: linking form and function in smashing mantis shrimp crustaceans.
Oecologia. 2016 Oct;182(2):429-42. doi: 10.1007/s00442-016-3667-5. Epub 2016 Jun 16.
9
Development and deposition of resilin in energy stores for locust jumping.
J Exp Biol. 2016 Aug 15;219(Pt 16):2449-57. doi: 10.1242/jeb.138941. Epub 2016 Jun 3.
10
Spectral absorption of visual pigments in stomatopod larval photoreceptors.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2016 Mar;202(3):215-23. doi: 10.1007/s00359-015-1063-y. Epub 2016 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验