Suppr超能文献

利用响应面法和人工神经网络从 sp. 中提取和优化胞外多糖。

Extraction and optimization of exopolysaccharide from sp. using response surface methodology and artificial neural networks.

机构信息

Department of Biotechnology, National Institute of Technology , Raipur , India.

出版信息

Prep Biochem Biotechnol. 2019;49(10):987-996. doi: 10.1080/10826068.2019.1645695. Epub 2019 Jul 30.

Abstract

The microbial polysaccharides secreted and produced from various microbes into their extracellular environment is known as exopolysaccharide. These polysaccharides can be secreted from the microbes either in a soluble or insoluble form. sp. is one of the organisms that have been found to produce exopolysaccharide. Exo-polysaccharides (EPS) have various applications such as drug delivery, antimicrobial activity, surgical implants and many more in different fields. Medium composition is one of the major aspects for the production of EPS from sp., optimization of medium components can help to enhance the synthesis of EPS . In the present work, the production of exopolysaccharide with different medium composition was optimized by response surface methodology (RSM) followed by tested for fitting with artificial neural networks (ANN). Three algorithms of ANN were compared to investigate the highest yeild of EPS. The highest yeild of EPS production in RSM was achieved by the medium composition that consists of (g/L) dextrose 15, sodium dihydrogen phosphate 3, potassium dihydrogen phosphate 2.5, triammonium citrate 1.5, and, magnesium sulfate 0.25. The output of 32 sets of RSM experiments were tested for fitting with ANN with three algorithms viz. Levenberg-Marquardt Algorithm (LMA), Bayesian Regularization Algorithm (BRA) and Scaled Conjugate Gradient Algorithm (SCGA) among them LMA found to have best fit with the experiments as compared to the SCGA and BRA.

摘要

各种微生物在其细胞外环境中分泌和产生的微生物多糖被称为胞外多糖。这些多糖可以以可溶性或不溶性的形式从微生物中分泌出来。 sp. 就是一种被发现能够产生胞外多糖的生物。胞外多糖 (EPS) 在不同领域有各种应用,如药物输送、抗菌活性、手术植入物等。培养基组成是 sp. 产生 EPS 的主要方面之一,优化培养基成分可以帮助提高 EPS 的合成。在本工作中,通过响应面法(RSM)对不同培养基组成下的胞外多糖生产进行了优化,然后用人工神经网络(ANN)进行拟合测试。比较了三种 ANN 算法,以研究 EPS 的最高产量。在 RSM 中,通过组成(g/L)为葡萄糖 15、磷酸二氢钠 3、磷酸二氢钾 2.5、柠檬酸三铵 1.5 和硫酸镁 0.25 的培养基实现了 EPS 产量的最高。RSM 的 32 组实验的输出结果用三种算法(Levenberg-Marquardt 算法(LMA)、贝叶斯正则化算法(BRA)和比例共轭梯度算法(SCGA))进行拟合,结果表明 LMA 与实验的拟合度优于 SCGA 和 BRA。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验