Suppr超能文献

光响应型纳米结构表面上的光致无响应分子放大细胞释放。

Photo-Irresponsive Molecule-Amplified Cell Release on Photoresponsive Nanostructured Surfaces.

机构信息

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.

University of the Chinese Academy of Sciences , Beijing 100049 , P. R. China.

出版信息

ACS Appl Mater Interfaces. 2019 Aug 21;11(33):29681-29688. doi: 10.1021/acsami.9b11957. Epub 2019 Aug 12.

Abstract

Cell manipulation has raised extensive concern owing to its underlying applications in numerous biological situations such as cell-matrix interaction, tissue engineering, and cell-based diagnosis. Generally, light is considered as a superior candidate for manipulating cells (e.g., cell release) due to their high spatiotemporal precision and non-invasion. However, it remains a big challenge to release cells with high efficiency due to their potential limitation of the light-triggered wettability transition on photoresponsive surfaces. In this study, we report a photoresponsive spiropyran-coated nanostructured surface that enables highly efficient release of cancer cells, amplified by the introduction of a photo-irresponsive molecule. On one hand, structural recognition stems from topological interaction between nanofractal surfaces and the protrusions of cancer cells. On the other, molecular recognition can be amplified by a photo-irresponsive and hydrophilic molecule by reducing the steric hindrance of photoresponsive components and resisting nonspecific cell adhesion. Therefore, this study may afford a novel avenue for developing advanced smart materials for high-quality biological analysis and clinical diagnosis.

摘要

细胞操控因其在细胞-基质相互作用、组织工程和基于细胞的诊断等众多生物情况下的潜在应用而引起了广泛关注。通常,由于光在时空精度和非侵入性方面的优势,被认为是操控细胞(例如细胞释放)的首选候选物。然而,由于光响应表面的光触发润湿性转变的潜在限制,高效释放细胞仍然是一个巨大的挑战。在本研究中,我们报告了一种光响应螺吡喃涂覆的纳米结构化表面,通过引入光惰性分子,可实现癌细胞的高效释放,从而得到放大效果。一方面,结构识别源于纳米分形表面与癌细胞突起之间的拓扑相互作用。另一方面,通过减少光响应成分的空间位阻并抵抗非特异性细胞黏附,光惰性和亲水分子的分子识别可以得到放大。因此,这项研究可能为开发用于高质量生物分析和临床诊断的先进智能材料提供新途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验