Bioconversion Group, Wageningen Food and Biobased Research, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands.
IFP Energies nouvelles, Biotechnology Department, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France.
Methods. 2020 Feb 1;172:51-60. doi: 10.1016/j.ymeth.2019.07.022. Epub 2019 Jul 27.
Recent developments in CRISPR technologies have opened new possibilities for improving genome editing tools dedicated to the Clostridium genus. In this study we adapted a two-plasmid tool based on this technology to enable scarless modification of the genome of two reference strains of Clostridium beijerinckii producing an Acetone/Butanol/Ethanol (ABE) or an Isopropanol/Butanol/Ethanol (IBE) mix of solvents. In the NCIMB 8052 ABE-producing strain, inactivation of the SpoIIE sporulation factor encoding gene resulted in sporulation-deficient mutants, and this phenotype was reverted by complementing the mutant strain with a functional spoIIE gene. Furthermore, the fungal cellulase-encoding celA gene was inserted into the C. beijerinckii NCIMB 8052 chromosome, resulting in mutants with endoglucanase activity. A similar two-plasmid approach was next used to edit the genome of the natural IBE-producing strain C. beijerinckii DSM 6423, which has never been genetically engineered before. Firstly, the catB gene conferring thiamphenicol resistance was deleted to make this strain compatible with our dual-plasmid editing system. As a proof of concept, our dual-plasmid system was then used in C. beijerinckii DSM 6423 ΔcatB to remove the endogenous pNF2 plasmid, which led to a sharp increase of transformation efficiencies.
CRISPR 技术的最新进展为改进专门针对梭菌属的基因组编辑工具开辟了新的可能性。在这项研究中,我们对基于这项技术的两质粒工具进行了改造,使其能够对两种生产丙酮丁醇乙醇(ABE)或异丙醇丁醇乙醇(IBE)混合溶剂的参考菌株 Clostridium beijerinckii 的基因组进行无痕修饰。在 NCIMB 8052 ABE 生产菌株中,spoIIE 孢子形成因子编码基因的失活导致了孢子形成缺陷突变体,而通过用功能性 spoIIE 基因互补突变菌株,这种表型得到了恢复。此外,真菌纤维素酶编码 celA 基因被插入 C. beijerinckii NCIMB 8052 染色体中,导致具有内切葡聚糖酶活性的突变体。接下来,我们使用类似的两质粒方法编辑了从未经过基因工程改造的天然 IBE 生产菌株 C. beijerinckii DSM 6423 的基因组。首先,删除了赋予氯霉素抗性的 catB 基因,以使该菌株与我们的双质粒编辑系统兼容。作为概念验证,我们的双质粒系统随后在 C. beijerinckii DSM 6423 ΔcatB 中用于去除内源性 pNF2 质粒,这导致转化效率急剧提高。