Department of Biology, University of Rochester, Rochester, New York, 14627
Department of Biology, University of Rochester, Rochester, New York, 14627.
G3 (Bethesda). 2019 Oct 7;9(10):3201-3211. doi: 10.1534/g3.119.400280.
Meiotic crossing over ensures proper segregation of homologous chromosomes and generates genotypic diversity. Despite these functions, little is known about the genetic factors and population genetic forces involved in the evolution of recombination rate differences among species. The dicistronic meiosis gene, , mediates most of the species differences in crossover rate and patterning during female meiosis between the closely related fruitfly species, and The MEI-218 protein is one of several meiosis-specific mini-chromosome maintenance (mei-MCM) proteins that form a multi-protein complex essential to crossover formation, whereas the BLM helicase acts as an anti-crossover protein. Here we study the molecular evolution of five genes- , the other three known members of the mei-MCM complex, and - over the phylogenies of three species groups- , , and We then use transgenic assays in to test if molecular evolution at has functional consequences for crossing over using alleles from the distantly related species and Our molecular evolutionary analyses reveal recurrent positive selection at two mei-MCM genes. Our transgenic assays show that sequence divergence among alleles from , , and has functional consequences for crossing over. In a genetic background, the allele nearly rescues wildtype crossover rates but alters crossover patterning, whereas the allele conversely rescues wildtype crossover patterning but not crossover rates. These experiments demonstrate functional divergence at and suggest that crossover rate and patterning are separable functions.
减数分裂交叉确保同源染色体的正确分离,并产生基因型多样性。尽管具有这些功能,但对于在物种间重组率差异的进化中涉及的遗传因素和群体遗传力知之甚少。二联体减数分裂基因 介导了在密切相关的果蝇物种 和 之间,雌性减数分裂过程中交叉率和模式的大多数物种差异。MEI-218 蛋白是几种减数分裂特异性微小染色体维持 (mei-MCM) 蛋白之一,形成形成交叉形成所必需的多蛋白复合物,而 BLM 解旋酶作为抗交叉蛋白。在这里,我们研究了五个基因- 、其他三个已知的 mei-MCM 复合物成员以及-在三个物种群的系统发育中的分子进化 、 和 然后,我们使用 中的转基因测定来测试 上的分子进化是否对使用来自远缘物种 和 的等位基因的交叉有功能后果。我们的分子进化分析揭示了两个 mei-MCM 基因的反复正选择。我们的转基因测定表明,来自 、 和 的 等位基因之间的序列差异对交叉具有功能后果。在 遗传背景下, 等位基因几乎可以挽救野生型交叉率,但改变了交叉模式,而 等位基因相反地挽救了野生型交叉模式,但不能挽救交叉率。这些实验证明了 上的功能分化,并表明交叉率和模式是可分离的功能。