Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521.
Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710.
Proc Natl Acad Sci U S A. 2019 Aug 13;116(33):16314-16319. doi: 10.1073/pnas.1903330116. Epub 2019 Jul 30.
Critical for diverse biological processes, proteases represent one of the largest families of pharmaceutical targets. To inhibit pathogenic proteases with desired selectivity, monoclonal antibodies (mAbs) hold great promise as research tools and therapeutic agents. However, identification of mAbs with inhibitory functions is challenging because current antibody discovery methods rely on binding rather than inhibition. This study developed a highly efficient selection method for protease inhibitory mAbs by coexpressing 3 recombinant proteins in the periplasmic space of -an antibody clone, a protease of interest, and a β-lactamase modified by insertion of a protease cleavable peptide sequence. During functional selection, inhibitory antibodies prevent the protease from cleaving the modified β-lactamase, thereby allowing the cell to survive in the presence of ampicillin. Using this method to select from synthetic human antibody libraries, we isolated panels of mAbs inhibiting 5 targets of 4 main protease classes: matrix metalloproteinases (MMP-14, a predominant target in metastasis; MMP-9, in neuropathic pain), β-secretase 1 (BACE-1, an aspartic protease in Alzheimer's disease), cathepsin B (a cysteine protease in cancer), and Alp2 (a serine protease in aspergillosis). Notably, 37 of 41 identified binders were inhibitory. Isolated mAb inhibitors exhibited nanomolar potency, exclusive selectivity, excellent proteolytic stability, and desired biological functions. Particularly, anti-Alp2 Fab A4A1 had a binding affinity of 11 nM and inhibition potency of 14 nM, anti-BACE1 IgG B2B2 reduced amyloid beta (Aβ) production by 80% in cellular assays, and IgG L13 inhibited MMP-9 but not MMP-2/-12/-14 and significantly relieved neuropathic pain development in mice.
蛋白酶在多种生物过程中起着关键作用,是最大的药物靶点家族之一。为了具有所需选择性地抑制致病蛋白酶,单克隆抗体 (mAb) 作为研究工具和治疗剂具有很大的潜力。然而,由于当前的抗体发现方法依赖于结合而不是抑制,因此识别具有抑制功能的 mAb 具有挑战性。本研究通过在周质空间中共表达 3 种重组蛋白,开发了一种针对感兴趣的蛋白酶和通过插入蛋白酶可切割肽序列修饰的β-内酰胺酶的高效选择方法,该方法用于选择具有抑制功能的 mAb。在功能选择过程中,抑制性抗体阻止蛋白酶切割修饰的β-内酰胺酶,从而使细胞能够在氨苄青霉素存在的情况下存活。使用这种方法从合成人抗体文库中进行选择,我们从四个主要蛋白酶类别的 5 个靶标中分离出 mAb 面板:基质金属蛋白酶 (MMP-14,转移的主要靶标;MMP-9,神经病理性疼痛)、β-分泌酶 1 (BACE-1,阿尔茨海默病中的天冬氨酸蛋白酶)、组织蛋白酶 B (癌症中的半胱氨酸蛋白酶)和 Alp2 (曲霉病中的丝氨酸蛋白酶)。值得注意的是,在鉴定的 41 个结合物中,有 37 个是抑制性的。分离出的 mAb 抑制剂具有纳摩尔效力、独特的选择性、优异的蛋白水解稳定性和所需的生物学功能。特别是,抗-Alp2 Fab A4A1 的结合亲和力为 11 nM,抑制效力为 14 nM,抗-BACE1 IgG B2B2 在细胞测定中降低了 80%的淀粉样蛋白β (Aβ) 产生,IgG L13 抑制 MMP-9 但不抑制 MMP-2/-12/-14,并显著缓解了小鼠的神经性疼痛发展。