Sanquin Research and Landsteiner Laboratory, Amsterdam Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
Department of Stem Cell Transplantation Research, University Children's Hospital Zürich, Zürich, Switzerland.
Mol Genet Genomic Med. 2019 Sep;7(9):e854. doi: 10.1002/mgg3.854. Epub 2019 Jul 30.
Chronic granulomatous disease (CGD) is a primary immune deficiency caused by mutations in the genes encoding the structural components of the phagocyte NADPH oxidase. As a result, the patients cannot generate sufficient amounts of reactive oxygen species required for killing pathogenic microorganisms.
We analyzed NADPH oxidase activity and component expression in neutrophils, performed genomic DNA and cDNA analysis, and used mRNA splicing prediction tools to evaluate the impact of mutations.
In two patients with CGD, we had previously found mutations that cause aberrant pre-mRNA splicing. In one patient an exonic mutation in a cryptic donor splice site caused the deletion of the 3' part of exon 6 from the mRNA of CYBB. This patient suffers from X-linked CGD. The second patient, with autosomal CGD, has a mutation in the donor splice site of intron 1 of CYBA that activates a cryptic donor splice site downstream in intron 1, causing the insertion of intronic sequences in the mRNA. The third patient, recently analyzed, also with autosomal CGD, has a mutation in intron 4 of CYBA, 15 bp from the acceptor splice site. This mutation weakens a branch site and activates a cryptic acceptor splice site, causing the insertion of 14 intronic nucleotides into the mRNA.
We found three different mutations, one exonic, one in a donor splice site and one intronic, that all caused missplicing of pre-mRNA. We analyzed these mutations with four different splice prediction programs and found that predictions of splice site strength, splice enhancer and splice silencer protein binding and branch site strength are all essential for correct prediction of pre-mRNA splicing.
慢性肉芽肿病(CGD)是一种原发性免疫缺陷病,由吞噬细胞 NADPH 氧化酶结构成分的基因突变引起。因此,患者无法产生足够数量的活性氧物质来杀死致病微生物。
我们分析了中性粒细胞的 NADPH 氧化酶活性和成分表达,进行了基因组 DNA 和 cDNA 分析,并使用 mRNA 剪接预测工具来评估突变的影响。
在两名 CGD 患者中,我们之前发现了导致异常前体 mRNA 剪接的突变。在一名患者中,一个外显子中的突变导致 CYBB 的 mRNA 中从外显子 6 的 3' 部分缺失。该患者患有 X 连锁 CGD。第二位患者为常染色体 CGD,CYBA 内含子 1 的供体位点突变激活了内含子 1 下游的一个隐蔽供体位点,导致内含子序列插入 mRNA。最近分析的第三位患者也患有常染色体 CGD,CYBA 内含子 4 中有一个突变,距离受体剪接位点 15bp。该突变削弱了分支位点并激活了一个隐蔽的受体剪接位点,导致 14 个内含子核苷酸插入 mRNA。
我们发现了三种不同的突变,一种是外显子突变,一种是供体位点突变,另一种是内含子突变,它们都导致了前体 mRNA 的错误剪接。我们使用四个不同的剪接预测程序分析了这些突变,并发现剪接位点强度、剪接增强子和剪接沉默子蛋白结合以及分支位点强度的预测对于正确预测前体 mRNA 剪接至关重要。