Soukarieh Omar, Gaildrat Pascaline, Hamieh Mohamad, Drouet Aurélie, Baert-Desurmont Stéphanie, Frébourg Thierry, Tosi Mario, Martins Alexandra
Inserm U1079-IRIB, University of Rouen, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.
Department of Genetics, University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.
PLoS Genet. 2016 Jan 13;12(1):e1005756. doi: 10.1371/journal.pgen.1005756. eCollection 2016 Jan.
The identification of a causal mutation is essential for molecular diagnosis and clinical management of many genetic disorders. However, even if next-generation exome sequencing has greatly improved the detection of nucleotide changes, the biological interpretation of most exonic variants remains challenging. Moreover, particular attention is typically given to protein-coding changes often neglecting the potential impact of exonic variants on RNA splicing. Here, we used the exon 10 of MLH1, a gene implicated in hereditary cancer, as a model system to assess the prevalence of RNA splicing mutations among all single-nucleotide variants identified in a given exon. We performed comprehensive minigene assays and analyzed patient's RNA when available. Our study revealed a staggering number of splicing mutations in MLH1 exon 10 (77% of the 22 analyzed variants), including mutations directly affecting splice sites and, particularly, mutations altering potential splicing regulatory elements (ESRs). We then used this thoroughly characterized dataset, together with experimental data derived from previous studies on BRCA1, BRCA2, CFTR and NF1, to evaluate the predictive power of 3 in silico approaches recently described as promising tools for pinpointing ESR-mutations. Our results indicate that ΔtESRseq and ΔHZEI-based approaches not only discriminate which variants affect splicing, but also predict the direction and severity of the induced splicing defects. In contrast, the ΔΨ-based approach did not show a compelling predictive power. Our data indicates that exonic splicing mutations are more prevalent than currently appreciated and that they can now be predicted by using bioinformatics methods. These findings have implications for all genetically-caused diseases.
确定致病突变对于许多遗传疾病的分子诊断和临床管理至关重要。然而,即使新一代外显子组测序极大地提高了核苷酸变化的检测能力,大多数外显子变异的生物学解释仍然具有挑战性。此外,人们通常特别关注蛋白质编码变化,往往忽视外显子变异对RNA剪接的潜在影响。在这里,我们以MLH1基因的第10外显子为模型系统,该基因与遗传性癌症有关,以评估在给定外显子中鉴定出的所有单核苷酸变异中RNA剪接突变的发生率。我们进行了全面的小基因分析,并在有可用样本时分析患者的RNA。我们的研究揭示了MLH1基因第10外显子中惊人数量的剪接突变(在所分析的22个变异中占77%),包括直接影响剪接位点的突变,特别是改变潜在剪接调控元件(ESR)的突变。然后,我们使用这个经过充分表征的数据集,以及先前关于BRCA1、BRCA2、CFTR和NF1的研究得出的实验数据,来评估最近被描述为确定ESR突变的有前途工具的三种计算机模拟方法的预测能力。我们的结果表明,基于ΔtESRseq和ΔHZEI的方法不仅能区分哪些变异影响剪接,还能预测诱导的剪接缺陷的方向和严重程度。相比之下,基于ΔΨ的方法没有显示出令人信服的预测能力。我们的数据表明,外显子剪接突变比目前所认识到的更为普遍,并且现在可以通过生物信息学方法进行预测。这些发现对所有遗传疾病都有影响。
Clin Exp Nephrol. 2025-6-10
Front Genet. 2024-5-22
Nucleic Acids Res. 2024-5-8
Genome Biol. 2023-5-22
Nucleic Acids Res. 2014
Hum Mutat. 2014-8
J Hum Genet. 2013-11-7