Suppr超能文献

原位小角 X 射线散射研究在可逆加成-断裂链转移水溶液聚合中的应用。

In Situ Small-Angle X-ray Scattering Studies During Reversible Addition-Fragmentation Chain Transfer Aqueous Emulsion Polymerization.

机构信息

Dainton Building, Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , United Kingdom.

Aston Institute of Materials Research, Aston University , Birmingham B4 7ET , United Kingdom.

出版信息

J Am Chem Soc. 2019 Aug 28;141(34):13664-13675. doi: 10.1021/jacs.9b06788. Epub 2019 Aug 14.

Abstract

Polymerization-induced self-assembly (PISA) is a powerful platform technology for the rational and efficient synthesis of a wide range of block copolymer nano-objects (e.g., spheres, worms or vesicles) in various media. small-angle X-ray scattering (SAXS) studies of reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization have previously provided detailed structural information during self-assembly (see M. J. Derry et al., 2016 , 7 , 5078 - 5090 ). However, conducting the analogous SAXS studies during RAFT aqueous emulsion polymerizations poses a formidable technical challenge because the inherently heterogeneous nature of such PISA formulations requires efficient stirring to generate sufficiently small monomer droplets. In the present study, the RAFT aqueous emulsion polymerization of 2-methoxyethyl methacrylate (MOEMA) has been explored for the first time. Chain extension of a relatively short non-ionic poly(glycerol monomethacrylate) (PGMA) precursor block leads to the formation of sterically-stabilized PGMA-PMOEMA spheres, worms or vesicles, depending on the precise reaction conditions. Construction of a suitable phase diagram enables each of these three morphologies to be reproducibly targeted at copolymer concentrations ranging from 10 to 30% w/w solids. High MOEMA conversions are achieved within 2 h at 70 °C, which makes this new PISA formulation well-suited for SAXS studies using a new reaction cell. This bespoke cell enables efficient stirring and hence allows monitoring during RAFT emulsion polymerization for the first time. For example, the onset of micellization and subsequent evolution in particle size can be studied when preparing PGMA-PMOEMA spheres at 10% w/w solids. When targeting PGMA-PMOEMA vesicles under the same conditions, both the micellar nucleation event and the subsequent evolution in the diblock copolymer morphology from spheres to worms to vesicles are observed. These new insights significantly enhance our understanding of the PISA mechanism during RAFT aqueous emulsion polymerization.

摘要

聚合诱导自组装(PISA)是一种强大的平台技术,可用于在各种介质中合理且高效地合成广泛的嵌段共聚物纳米物体(例如,球体、蠕虫或囊泡)。 通过小角 X 射线散射(SAXS)研究可逆加成-断裂链转移(RAFT)分散聚合,在自组装过程中提供了详细的结构信息(见 M. J. Derry 等人,2016 年,7,5078-5090)。 然而,在 RAFT 水乳液聚合过程中进行类似的 SAXS 研究提出了一个艰巨的技术挑战,因为这种 PISA 制剂的固有非均相性质需要有效的搅拌以生成足够小的单体液滴。 在本研究中,首次探索了 2-甲氧基乙基甲基丙烯酸酯(MOEMA)的 RAFT 水乳液聚合。 相对较短的非离子聚(甘油单甲基丙烯酸酯)(PGMA)前体嵌段的链延伸导致形成空间稳定的 PGMA-PMOEMA 球体、蠕虫或囊泡,具体取决于精确的反应条件。 构建合适的相图可使这三种形貌中的每一种都可在共聚物浓度为 10 至 30%w/w 固体的范围内重现。 在 70°C 下 2 小时内可实现高 MOEMA 转化率,这使得这种新的 PISA 配方非常适合使用新的反应池进行 SAXS 研究。 这种定制的池能够实现高效搅拌,因此首次能够在 RAFT 乳液聚合过程中进行监测。 例如,当在 10%w/w 固体下制备 PGMA-PMOEMA 球体时,可以研究胶束化的开始和随后的粒径演变。 在相同条件下靶向 PGMA-PMOEMA 囊泡时,观察到胶束成核事件以及随后二嵌段共聚物形态从球体到蠕虫到囊泡的演变。 这些新的见解极大地提高了我们对 RAFT 水乳液聚合过程中 PISA 机制的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2099/6716212/02e041749d8e/ja9b06788_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验