Suppr超能文献

应用计算机辅助多帧分析容积激光内镜对 Barrett 肿瘤进行改良检测。

Improved Barrett's neoplasia detection using computer-assisted multiframe analysis of volumetric laser endomicroscopy.

机构信息

Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam.

Department of Electrical Engineering, VCA Group, Eindhoven University of Technology.

出版信息

Dis Esophagus. 2020 Mar 5;33(2). doi: 10.1093/dote/doz065.

Abstract

Volumetric laser endomicroscopy (VLE) is a balloon-based technique, which provides a circumferential near-microscopic scan of the esophageal wall layers, and has potential to improve Barrett's neoplasia detection. Interpretation of VLE imagery in Barrett's esophagus (BE) however is time-consuming and complex, due to a large amount of visual information and numerous subtle gray-shaded VLE images. Computer-aided detection (CAD), analyzing multiple neighboring VLE frames, might improve BE neoplasia detection compared to automated single-frame analyses. This study is to evaluate feasibility of automatic data extraction followed by CAD using a multiframe approach for detection of BE neoplasia. Prospectively collected ex-vivo VLE images from 29 BE-patients with and without early neoplasia were retrospectively analyzed. Sixty histopathology-correlated regions of interest (30 nondysplastic vs. 30 neoplastic) were assessed using different CAD systems. Multiple neighboring VLE frames, corresponding to 1.25 millimeter proximal and distal to each region of interest, were evaluated. In total, 3060 VLE frames were analyzed via the CAD multiframe analysis. Multiframe analysis resulted in a significantly higher median AUC (median level = 0.91) compared to single-frame (median level = 0.83) with a median difference of 0.08 (95% CI, 0.06-0.10), P < 0.001. A maximum AUC of 0.94 was reached when including 22 frames on each side using a multiframe approach. In total, 3060 VLE frames were automatically extracted and analyzed by CAD in 3.9 seconds. Multiframe VLE image analysis shows improved BE neoplasia detection compared to single-frame analysis. CAD with multiframe analysis allows for fast and accurate VLE interpretation, thereby showing feasibility of automatic full scan assessment in a real-time setting during endoscopy.

摘要

容积激光内窥镜检查(VLE)是一种基于气囊的技术,可提供食管壁层的圆周近微观扫描,并且有可能提高 Barrett 肿瘤的检测。然而,由于大量的视觉信息和许多细微的灰度 VLE 图像,VLE 图像在 Barrett 食管(BE)中的解释既耗时又复杂。与自动化单帧分析相比,计算机辅助检测(CAD)分析多个相邻的 VLE 帧,可能会提高 BE 肿瘤的检测。本研究旨在评估使用多帧方法进行自动数据提取后,CAD 检测 BE 肿瘤的可行性。前瞻性收集了 29 例有和无早期肿瘤的 BE 患者的离体 VLE 图像,对这些图像进行了回顾性分析。使用不同的 CAD 系统评估了 60 个与组织病理学相关的感兴趣区域(30 个非不典型增生与 30 个肿瘤)。评估了每个感兴趣区域近端和远端 1.25 毫米处对应的多个相邻 VLE 帧。通过 CAD 多帧分析共分析了 3060 个 VLE 帧。多帧分析的 AUC 中位数(中位数水平为 0.91)显著高于单帧分析(中位数水平为 0.83),中位数差异为 0.08(95%CI,0.06-0.10),P<0.001。当使用多帧方法在每侧包含 22 个帧时,达到了最高 AUC 为 0.94。总共在 3.9 秒内通过 CAD 自动提取并分析了 3060 个 VLE 帧。与单帧分析相比,多帧 VLE 图像分析显示可提高 BE 肿瘤的检测。多帧分析的 CAD 允许快速准确地进行 VLE 解释,从而显示了在实时内镜检查期间自动进行全扫描评估的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验