Suppr超能文献

用于 Barrett 肿瘤检测的容积激光共聚焦内镜计算机算法的前瞻性开发和验证。

Prospective development and validation of a volumetric laser endomicroscopy computer algorithm for detection of Barrett's neoplasia.

机构信息

Department of Gastroenterology and Hepatology, Amsterdam UMC, location AMC, Amsterdam, the Netherlands.

Department of Electrical Engineering, VCA group, Eindhoven University of Technology, Eindhoven, the Netherlands.

出版信息

Gastrointest Endosc. 2021 Apr;93(4):871-879. doi: 10.1016/j.gie.2020.07.052. Epub 2020 Jul 29.

Abstract

BACKGROUND AND AIMS

Volumetric laser endomicroscopy (VLE) is an advanced imaging modality used to detect Barrett's esophagus (BE) dysplasia. However, real-time interpretation of VLE scans is complex and time-consuming. Computer-aided detection (CAD) may help in the process of VLE image interpretation. Our aim was to train and validate a CAD algorithm for VLE-based detection of BE neoplasia.

METHODS

The multicenter, VLE PREDICT study, prospectively enrolled 47 patients with BE. In total, 229 nondysplastic BE and 89 neoplastic (high-grade dysplasia/esophageal adenocarcinoma) targets were laser marked under VLE guidance and subsequently underwent a biopsy for histologic diagnosis. Deep convolutional neural networks were used to construct a CAD algorithm for differentiation between nondysplastic and neoplastic BE tissue. The CAD algorithm was trained on a set consisting of the first 22 patients (134 nondysplastic BE and 38 neoplastic targets) and validated on a separate test set from patients 23 to 47 (95 nondysplastic BE and 51 neoplastic targets). The performance of the algorithm was benchmarked against the performance of 10 VLE experts.

RESULTS

Using the training set to construct the algorithm resulted in an accuracy of 92%, sensitivity of 95%, and specificity of 92%. When performance was assessed on the test set, accuracy, sensitivity, and specificity were 85%, 91%, and 82%, respectively. The algorithm outperformed all 10 VLE experts, who demonstrated an overall accuracy of 77%, sensitivity of 70%, and specificity of 81%.

CONCLUSIONS

We developed, validated, and benchmarked a VLE CAD algorithm for detection of BE neoplasia using prospectively collected and biopsy-correlated VLE targets. The algorithm detected neoplasia with high accuracy and outperformed 10 VLE experts. (The Netherlands National Trials Registry (NTR) number: NTR 6728.).

摘要

背景和目的

容积激光共聚焦内镜(VLE)是一种用于检测 Barrett 食管(BE)异型增生的先进成像方式。然而,实时解读 VLE 扫描结果非常复杂且耗时。计算机辅助检测(CAD)可能有助于 VLE 图像解读过程。我们的目的是训练和验证一种基于 VLE 的 CAD 算法,用于检测 BE 肿瘤性病变。

方法

多中心、VLE PREDICT 研究前瞻性纳入 47 例 BE 患者。共在 VLE 引导下激光标记 229 例非异型增生 BE 和 89 例异型增生(高级别异型增生/食管腺癌)靶标,并对其进行活检以进行组织学诊断。使用深度卷积神经网络构建 CAD 算法,用于区分非异型增生和异型增生 BE 组织。该 CAD 算法在包含前 22 例患者(134 例非异型增生 BE 和 38 例异型增生靶标)的数据集上进行训练,并在从第 23 例至第 47 例患者(95 例非异型增生 BE 和 51 例异型增生靶标)的独立测试集上进行验证。将算法的性能与 10 名 VLE 专家的性能进行了比较。

结果

使用训练集构建算法可实现 92%的准确率、95%的敏感性和 92%的特异性。在测试集上评估性能时,准确率、敏感性和特异性分别为 85%、91%和 82%。该算法的性能优于所有 10 名 VLE 专家,他们的总体准确率为 77%、敏感性为 70%、特异性为 81%。

结论

我们使用前瞻性采集和活检相关的 VLE 靶标开发、验证和基准测试了用于检测 BE 肿瘤性病变的 VLE CAD 算法。该算法以较高的准确率检测出了肿瘤性病变,并且优于 10 名 VLE 专家。(荷兰国家临床试验注册处(NTR)编号:NTR 6728.)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验