Suppr超能文献

邻苯二甲酸酯的微生物降解:生物化学与环境意义。

Microbial degradation of phthalates: biochemistry and environmental implications.

机构信息

Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany.

Department of Biology and Microbial Ecology, University of Konstanz, Constance, Germany.

出版信息

Environ Microbiol Rep. 2020 Feb;12(1):3-15. doi: 10.1111/1758-2229.12787. Epub 2019 Aug 21.

Abstract

The environmentally relevant xenobiotic esters of phthalic acid (PA), isophthalic acid (IPA) and terephthalic acid (TPA) are produced on a million ton scale annually and are predominantly used as plastic polymers or plasticizers. Degradation by microorganisms is considered as the most effective means of their elimination from the environment and proceeds via hydrolysis to the corresponding PA isomers and alcohols under oxic and anoxic conditions. Further degradation of PA, IPA and TPA differs fundamentally between anaerobic and aerobic microorganisms. The latter introduce hydroxyl functionalities by dioxygenases to facilitate subsequent decarboxylation by either aromatizing dehydrogenases or cofactor-free decarboxylases. In contrast, anaerobic bacteria activate the PA isomers to the respective thioesters using CoA ligases or CoA transferases followed by decarboxylation to the central intermediate benzoyl-CoA. Decarboxylases acting on the three PA CoA thioesters belong to the UbiD enzyme family that harbour a prenylated flavin mononucleotide (FMN) cofactor to achieve the mechanistically challenging decarboxylation. Capture of the extremely instable PA-CoA intermediate is accomplished by a massive overproduction of phthaloyl-CoA decarboxylase and a balanced production of PA-CoA forming/decarboxylating enzymes. The strategy of anaerobic phthalate degradation probably represents a snapshot of an ongoing evolution of a xenobiotic degradation pathway via a short-lived reaction intermediate.

摘要

环境相关的邻苯二甲酸(PA)、间苯二甲酸(IPA)和对苯二甲酸(TPA)酯每年以百万吨的规模生产,主要用作塑料聚合物或增塑剂。微生物的降解被认为是从环境中消除它们的最有效手段,在有氧和缺氧条件下通过水解转化为相应的 PA 异构体和醇。PA、IPA 和 TPA 在厌氧和需氧微生物中的进一步降解有根本的区别。后者通过双加氧酶引入羟基官能团,以促进随后的脱羧反应,要么通过芳香化脱氢酶,要么通过无辅因子的脱羧酶。相比之下,厌氧细菌使用 CoA 连接酶或 CoA 转移酶将 PA 异构体激活为各自的硫酯,然后进行脱羧反应生成中心中间体苯甲酰-CoA。作用于三种 PA CoA 硫酯的脱羧酶属于 UbiD 酶家族,该家族含有一个被异戊烯基化黄素单核苷酸(FMN)辅因子,以实现具有挑战性的脱羧反应。通过大量过量产生邻苯二甲酰-CoA 脱羧酶和平衡产生形成/脱羧酶来捕获极其不稳定的 PA-CoA 中间产物。厌氧邻苯二甲酸酯降解的策略可能代表了通过短暂反应中间体进行的外来生物降解途径的正在进行的进化的一个快照。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验