Ebenau-Jehle Christa, Mergelsberg Mario, Fischer Stefanie, Brüls Thomas, Jehmlich Nico, von Bergen Martin, Boll Matthias
University of Freiburg, Institute for Biology II, Freiburg, Germany.
CEA, DRF, IG, Genoscope, Evry, France.
ISME J. 2017 Jan;11(1):224-236. doi: 10.1038/ismej.2016.91. Epub 2016 Jul 8.
In the past two decades, the study of oxygen-independent degradation of widely abundant aromatic compounds in anaerobic bacteria has revealed numerous unprecedented enzymatic principles. Surprisingly, the organisms, metabolites and enzymes involved in the degradation of o-phthalate (1,2-dicarboxybenzene), mainly derived from phthalate esters that are annually produced at the million ton scale, are sparsely known. Here, we demonstrate a previously unknown capacity of complete phthalate degradation in established aromatic compound-degrading, denitrifying model organisms of the genera Thauera, Azoarcus and 'Aromatoleum'. Differential proteome analyses revealed phthalate-induced gene clusters involved in uptake and conversion of phthalate to the central intermediate benzoyl-CoA. Enzyme assays provided in vitro evidence for the formation of phthaloyl-CoA by a succinyl-CoA- and phthalate-specific CoA transferase, which is essential for the subsequent oxygen-sensitive decarboxylation to benzoyl-CoA. The extreme instability of the phthaloyl-CoA intermediate requires highly balanced CoA transferase and decarboxylase activities to avoid its cellular accumulation. Phylogenetic analysis revealed phthaloyl-CoA decarboxylase as a novel member of the UbiD-like, (de)carboxylase enzyme family. Homologs of the encoding gene form a phylogenetic cluster and are found in soil, freshwater and marine bacteria; an ongoing global distribution of a possibly only recently evolved degradation pathway is suggested.
在过去二十年中,对厌氧细菌中广泛存在的芳香族化合物的无氧降解研究揭示了许多前所未有的酶学原理。令人惊讶的是,参与邻苯二甲酸酯(1,2 - 二羧基苯)降解的生物、代谢物和酶却鲜为人知,邻苯二甲酸酯主要来源于每年产量达百万吨规模的邻苯二甲酸酯类。在此,我们展示了在已确立的降解芳香族化合物的脱氮模型生物陶厄氏菌属、偶氮弧菌属和“芳香油菌属”中,存在一种此前未知的完全降解邻苯二甲酸酯的能力。差异蛋白质组分析揭示了邻苯二甲酸酯诱导的基因簇,这些基因簇参与邻苯二甲酸酯的摄取以及将其转化为中心中间体苯甲酰辅酶A。酶活性测定提供了体外证据,证明琥珀酰辅酶A和邻苯二甲酸特异性辅酶A转移酶可形成邻苯二甲酰辅酶A,这对于随后对氧气敏感的脱羧反应生成苯甲酰辅酶A至关重要。邻苯二甲酰辅酶A中间体的极端不稳定性要求辅酶A转移酶和脱羧酶的活性高度平衡,以避免其在细胞内积累。系统发育分析表明,邻苯二甲酰辅酶A脱羧酶是泛素D样(脱)羧酶家族的一个新成员。编码该酶的基因同源物形成一个系统发育簇,且在土壤、淡水和海洋细菌中均有发现;这表明一种可能是最近才进化出的降解途径正在全球范围内传播。