Suppr超能文献

作为多硫化物清除剂的秋兰姆硫化促进剂用于抑制高性能锂硫电池的穿梭效应

Thiuram Vulcanization Accelerators as Polysulfide Scavengers To Suppress Shuttle Effects for High-Performance Lithium-Sulfur Batteries.

作者信息

Xiang Qian, Shi Chenyang, Zhang Xueya, Zhang Lin, He Liang, Hong Bo, Lai Yanqing

机构信息

School of Metallurgy and Environment , Central South University , Changsha , Hunan 410083 , China.

出版信息

ACS Appl Mater Interfaces. 2019 Aug 21;11(33):29970-29977. doi: 10.1021/acsami.9b09546. Epub 2019 Aug 12.

Abstract

Lithium-sulfur (Li-S) batteries are considered to be one of the most promising alternatives for next-generation high energy-density storage systems. Nevertheless, the notorious "shuttle effect" and sluggish kinetic conversion in actual operation seriously hamper its practical application. Herein, inspired by the action mechanism of vulcanization accelerators, dipentamethylenethiuram tetrasulfide (DPTT) is employed as a novel electrolyte additive. Just like a scavenger, DPTT sweeps lithium polysulfide by a spontaneous instant chemical reaction between them, and the latter is quickly converted to LiS, along with the generation of elemental S, which will be reduced to polysulfide again. This is beneficial for relieving the accumulation and shuttling of polysulfide in the electrolyte. Therefore, Li-S batteries with DPTT-containing electrolyte exhibit enhanced capacity retention and improved rate performance. With 4 wt % DPTT additive and 3.03 mg cm S loading, the cell delivers a high initial capacity of 1227.6 mA h g and excellent capacity retention of 914.7 mA h g after 250 cycles at 0.5 C. This study provides a fresh insight into suppressing the shuttle effect and realizing high-performance Li-S batteries.

摘要

锂硫(Li-S)电池被认为是下一代高能量密度存储系统最有前景的替代方案之一。然而,实际运行中臭名昭著的“穿梭效应”和缓慢的动力学转换严重阻碍了其实际应用。在此,受硫化促进剂作用机制的启发,二亚戊基四硫化秋兰姆(DPTT)被用作一种新型电解质添加剂。就像一个清除剂一样,DPTT通过它们之间自发的即时化学反应清除多硫化锂,后者迅速转化为LiS,同时生成元素硫,而元素硫又会再次还原为多硫化物。这有利于缓解多硫化物在电解质中的积累和穿梭。因此,含有DPTT电解质的锂硫电池表现出增强的容量保持率和改善的倍率性能。在含有4 wt% DPTT添加剂和3.03 mg cm硫负载量的情况下,该电池在0.5 C下经过250次循环后,具有1227.6 mA h g的高初始容量和914.7 mA h g的优异容量保持率。这项研究为抑制穿梭效应和实现高性能锂硫电池提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验