Dong Liwei, Liu Jipeng, Chen Dongjiang, Han Yupei, Liang Yifang, Yang Mengqiu, Yang Chunhui, He Weidong
School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage , Harbin Institute of Technology , Harbin 150080 , China.
National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, and Center for Composite Materials and Structures , Harbin Institute of Technology , Harbin 150080 , China.
ACS Nano. 2019 Dec 24;13(12):14172-14181. doi: 10.1021/acsnano.9b06934. Epub 2019 Nov 25.
The lithium sulfur battery is regarded as a potential next-generation high-energy battery system. However, polysulfides dissolve and shuttle through the electrolytes, causing rapid capacity decay, serious self-discharge, and poor high-temperature performances. Here, we demonstrate that by directly introducing glutamate into commercial electrolytes, these issues can be tackled simultaneously. With abundant negatively charged hydroxyl groups, the glutamate additive electrolyte effectively suppresses the shuttling of negatively charged polysulfide ions through strong repulsive interaction up to 1.54 eV. With glutamate additive electrolyte, the lithium sulfur battery has a capacity retention of 60% after 1000 cycles at 5.95 mA/cm, a self-discharge rate on the order of one-third that of commercial electrolytes, and stable operation at 60 °C.
锂硫电池被视为一种潜在的下一代高能电池系统。然而,多硫化物会溶解并穿梭于电解质中,导致容量迅速衰减、严重的自放电以及较差的高温性能。在此,我们证明通过直接将谷氨酸引入商用电解质中,这些问题可以同时得到解决。谷氨酸添加剂电解质具有大量带负电荷的羟基,通过高达1.54电子伏特的强排斥相互作用,有效地抑制了带负电荷的多硫化物离子的穿梭。使用谷氨酸添加剂电解质时,锂硫电池在5.95毫安/平方厘米的电流下循环1000次后容量保持率为60%,自放电率约为商用电解质的三分之一,并且在60℃下能稳定运行。